Skip to main content

Task and Instance Quadratic Ordering for Active Online Multitask Learning

  • 1817 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11303)


For online multitask learning (oMTL), when a chunk of tasks consisting of multiple related instances is received in one batch, the learner normally has the chance to actively order these tasks to improve the learning efficiency. This paper proposes a quadratic ordering method for active oMTL, where instance ordering is integrated into task ordering by taking each instance in one task. The proposed task and instance quadratic ordering is able to facilitate oMTL better than single task ordering. The orderings derived in this paper can be incorporated into any individual oMTL algorithms for active oMTL. The performance evaluations on four real-word datasets demonstrate the benefits of the proposed algorithms.


  • Online Multitask Learning (oMTL)
  • Active oMTL
  • Quadratic ordering
  • Task ordering
  • Instance ordering

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-04182-3_38
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-04182-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.


  1. Ando, K., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6(2), 1817–1853 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Cavallanti, G., Cesabianchi, N., Gentile, C.: Linear algorithms for online multitask classification. J. Mach. Learn. Res. 11, 2901–2934 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Ruvolo, P., Eaton, E.: Active task selection for lifelong machine learning. In: 27th AAAI Conference on Artificial Intelligence, pp. 862–868. Springer, Washington (2013)

    Google Scholar 

  4. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2(8), 45–66 (2001)

    MATH  Google Scholar 

  5. Steinwart, I., Christmann, A.: Support Vector Machines. Springer Science & Business Media, USA (2008)

    MATH  Google Scholar 

  6. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: 26th International Conference on Machine Learning, pp. 41–48. ACM, USA(2009)

    Google Scholar 

  7. Kumar, M., Packer, B., Koller, D.: Self-paced learning for latent variable models. Neural Inf. Process. Syst. 23(5), 1189–1197 (2010)

    Google Scholar 

  8. Saha, A., Rai, P., Daume, H., Venkatasubramanian, S.: Active online multitask learning. In: 27th International Conference on Machine Learning, pp. 1123–1131. Citeseer, Israel (2010)

    Google Scholar 

  9. Ruvolo, P., Eaton, E.: Ella: An efficient lifelong learning algorithm. In: 30th International Conference on Machine Learning, pp. 507–515. ACM, Atlanta (2013)

    Google Scholar 

  10. Pang, S., An, J., Zhao, J., Li, X., Ban, T., Inoue, D., Sarrafzadeh, A.: Smart task orderings for active online multitask learning. In: Proceedings of 2014 SIAM International Conference on Data Mining. SIAM, Pennysylvania (2014)

    Google Scholar 

  11. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73(3), 243–272 (2008)

    CrossRef  Google Scholar 

  12. Valstar, M., Jiang, B., Pantic, M., Scherer, K.: The first facial expression recognition and analysis challenge. In: 9th IEEE International Conference on Automatic Face Gesture Recognition, pp. 921–926. IEEE, California (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Pang, S., Ardekani, I.T., Sekiya, Y., Miyamoto, D. (2018). Task and Instance Quadratic Ordering for Active Online Multitask Learning. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11303. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04181-6

  • Online ISBN: 978-3-030-04182-3

  • eBook Packages: Computer ScienceComputer Science (R0)