Skip to main content

Convolutional Transform Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11303))

Included in the following conference series:

Abstract

This work proposes a new representation learning technique called convolutional transform learning. In standard transform learning, a dense basis is learned that analyses the image to generate the representation from the image. Here, we learn a set of independent convolutional filters that operate on the images to produce representations (one corresponding to each filter). The major advantage of our proposed approach is that it is completely unsupervised; unlike CNNs where labeled images are required for training. Moreover, it relies on a well-sounded minimization technique with established convergence guarantees. We have compared the proposed method with dictionary learning and transform learning on standard image classification datasets. Results show that our method improves over the rest by a considerable margin.

This work was supported by the CNRS-CEFIPRA project under grant NextGenBP PRC2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also http://proximity-operator.net/.

References

  1. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    Google Scholar 

  2. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of ICLR, Banff, Canada, April 2014

    Google Scholar 

  3. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.: Adversarial autoencoders. In: Proceedings of ICLR, San Juan, Puerto Rico, May 2016

    Google Scholar 

  4. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. J. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  5. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  6. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. J. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  7. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. J. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  8. Shekhar, M., Patel, S., Chellappa, R.: Analysis sparse coding models for image-based classification. In: Proceedings of ICIP, pp. 5207–5211, Paris, France (2014)

    Google Scholar 

  9. Guo, J., Guo, Y., Kong, X., Zhang, M., He, R.: Discriminative analysis dictionary learning. In: Proceedings of AAAI, pp. 1617–1623, Phoenix, AZ, USA (2016)

    Google Scholar 

  10. Huang, F., Anandkumar, A.: Convolutional dictionary learning through tensor factorization. In: NIPS Workshop: Feature Extraction, pp. 116–129, Montreal, Canada (2015)

    Google Scholar 

  11. Garcia-Cardona, C., Wohlberg, B.: Convolutional dictionary learning, Preprint arXiv:1709.02893 (2017)

  12. Papyan, V., Romano, Y., Sulam, J., Elad, M.: Convolutional dictionary learning via local processing, Preprint arXiv:1705.03239 (2017)

  13. Ravishankar, S., Bresler, Y.: Learning sparsifying transforms. J. IEEE Trans. Signal Process. 61(5), 1072–1086 (2013)

    Article  MathSciNet  Google Scholar 

  14. Ravishankar, S., Wen, B., Bresler, Y.: Online sparsifying transform learning - Part I. J. IEEE J. Sel. Topics Signal Process. 9(4), 625–636 (2015)

    Google Scholar 

  15. Ravishankar, S., Bresler, Y.: Online sparsifying transform learning - Part II. J. IEEE J. Sel. Topics Signal Process. 9(4), 637–646 (2015)

    Google Scholar 

  16. Chabiron, O., Malgouyres, F., Tourneret, J.Y., Dobigeon, N.: Toward fast transform learning. Int. J. Comput. Vis. 114, 195 (2015)

    Article  MathSciNet  Google Scholar 

  17. Maggu, J., Majumdar, A.: Kernel transform learning. J. Pattern Recognit. Lett. 98, 117–122 (2017)

    Article  Google Scholar 

  18. Maggu, J., Majumdar, A.: Greedy deep transform learning. In: Proceedings of ICIP, Beijing, China (2017)

    Google Scholar 

  19. Maggu, J., Majumdar, A.: Unsupervised deep transform learning. In: Proceedings of ICASSP, Calgary, Canada (2018)

    Google Scholar 

  20. Fagot, D., Fevotte, C., Wendt, H.: Nonnegative Matrix Factorization with Transform Learning, Preprint arXiv:1705.04193, December 2017

  21. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, New York (2017). https://doi.org/10.1007/978-3-319-48311-5

    Book  MATH  Google Scholar 

  22. Chouzenoux, E., Pesquet, J.C., Repetti, A.: A block coordinate variable metric forward-backward algorithm. J. Global Optim. 66(3), 457–485 (2016)

    Article  MathSciNet  Google Scholar 

  23. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. J. Math. Program. 146(1–2), 459–494 (2014)

    Article  MathSciNet  Google Scholar 

  24. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. J. Math. Program. 137(1), 91–129 (2013)

    Article  MathSciNet  Google Scholar 

  25. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. J. Bull. Soc. Math. France 93, 273–299 (1965)

    Article  Google Scholar 

  26. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-9569-8_10

    Google Scholar 

  27. Bolte, J., Combettes, P.L., Pesquet, J.C.: Alternating proximal algorithm for blind image recovery. In: Proceedings of ICIP, pp. 1673–1676, Hong Kong, China (2010)

    Google Scholar 

  28. Chouzenoux, E., Benfenati, A., Pesquet, J.C.: A proximal approach for a class of matrix optimization problems, Tech. Rep. (2017). http://arxiv.org/abs/1801.07452

  29. Bellhumer, P.N., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. J. IEEE Trans. Pattern Anal. Mach. Intell. 17(7), 711–720 (1997)

    Google Scholar 

  30. Lee, K.C., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. J. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

    Article  Google Scholar 

  31. Martinez, M., Benavente, R.: The AR face database, Tech. Rep., CVC 24 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Maggu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maggu, J., Chouzenoux, E., Chierchia, G., Majumdar, A. (2018). Convolutional Transform Learning. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11303. Springer, Cham. https://doi.org/10.1007/978-3-030-04182-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04182-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04181-6

  • Online ISBN: 978-3-030-04182-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics