Advertisement

An Estimation of Distribution Algorithm for Large-Scale Optimization with Cooperative Co-evolution and Local Search

  • Jia-Ying Lin
  • Wei-Neng ChenEmail author
  • Jun Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11302)

Abstract

Cooperative co-evolution (CC) is an effective framework for evolutionary algorithms (EAs) to solve large-scale optimization problems. By combining a divide-and-conquer strategy and the classic evolutionary algorithms (EA) like genetic algorithm (GA), CC has shown promising performance in many fields. As a family of EAs, the estimation of distribution algorithm (EDA) is good at search diversity maintenance, but its capability in solving large-scale problems has not been fully explored. In this paper, we aim to propose a new estimation of distribution algorithm with the cooperative co-evolution framework (EDACC). The proposed EDACC has the following features. (1) The differential grouping (DG) strategy is applied for variable decomposition. (2) A combination of the Gaussian and Cauchy distributions are adopted to generate offspring. (3) A local search method is performed in promising domains to accelerate the search. To verify the performance of EDACC, experiments are conducted on 20 single-objective functions in the CEC 2010 benchmarks. The experimental results show that EDACC can still achieve competitive performance in spite of the weakness of the original EDAs like the low accuracy in global optima searching compared with classical EAs.

Keywords

Estimation of distribution algorithm (EDA) Large-scale optimization Cooperative Co-evolution (CC) 

References

  1. 1.
    Antonio, L.M., Coello, C.A.C.: Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2758–2765. IEEE (2013)Google Scholar
  2. 2.
    Bengoetxea, E., Larrañaga, P., Bloch, I., Perchant, A.: Estimation of distribution algorithms: a new evolutionary computation approach for graph matching problems. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 454–469. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44745-8_30CrossRefGoogle Scholar
  3. 3.
    Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)CrossRefGoogle Scholar
  4. 4.
    Chen, W., Weise, T., Yang, Z., Tang, K.: Large-scale global optimization using cooperative coevolution with variable interaction learning. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 300–309. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15871-1_31CrossRefGoogle Scholar
  5. 5.
    Cheng, R., Jin, Y.: A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 45(2), 191–204 (2015)CrossRefGoogle Scholar
  6. 6.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  7. 7.
    Fan, J., Wang, J., Han, M.: Cooperative coevolution for large-scale optimization based on kernel fuzzy clustering and variable trust region methods. IEEE Trans. Fuzzy Syst. 22(4), 829–839 (2014)CrossRefGoogle Scholar
  8. 8.
    Fletcher, R.: Practical Methods of Optimization. Wiley, Hoboken (2013)zbMATHGoogle Scholar
  9. 9.
    Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011)CrossRefGoogle Scholar
  10. 10.
    Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Boston (2011)Google Scholar
  11. 11.
    Luo, N., Qian, F.: Estimation of distribution algorithm sampling under Gaussian and Cauchy distribution in continuous domain. In: 2010 8th IEEE International Conference on Control and Automation (ICCA), pp. 1716–1720. IEEE (2010)Google Scholar
  12. 12.
    Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61723-X_982CrossRefGoogle Scholar
  13. 13.
    Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2014)CrossRefGoogle Scholar
  14. 14.
    Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-58484-6_269CrossRefGoogle Scholar
  15. 15.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York (2007)Google Scholar
  16. 16.
    Santana, R., Larrañaga, P., Lozano, J.A.: Protein folding in simplified models with estimation of distribution algorithms. IEEE Trans. Evol. Comput. 12(4), 418–438 (2008)CrossRefGoogle Scholar
  17. 17.
    Sebag, M., Ducoulombier, A.: Extending population-based incremental learning to continuous search spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 418–427. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0056884CrossRefGoogle Scholar
  18. 18.
    Shi, W., Chen, W.N., Lin, Y., Gu, T., Kwong, S., Zhang, J.: An adaptive estimation of distribution algorithm for multi-policy insurance investment planning. IEEE Trans. Evol. Comput. (2017)Google Scholar
  19. 19.
    Srinivasa, K., Venugopal, K., Patnaik, L.M.: A self-adaptive migration model genetic algorithm for data mining applications. Inf. Sci. 177(20), 4295–4313 (2007)CrossRefGoogle Scholar
  20. 20.
    Sun, Y., Kirley, M., Halgamuge, S.K.: Extended differential grouping for large scale global optimization with direct and indirect variable interactions. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 313–320. ACM (2015)Google Scholar
  21. 21.
    Teklu, F., Sumalee, A., Watling, D.: A genetic algorithm approach for optimizing traffic control signals considering routing. Comput. Aided Civ. Infrastruct. Eng. 22(1), 31–43 (2007)CrossRefGoogle Scholar
  22. 22.
    Yang, Q., Chen, W.N., Li, Y., Chen, C.P., Xu, X.M., Zhang, J.: Multimodal estimation of distribution algorithms. IEEE Trans. Cybern. 47(3), 636–650 (2017)CrossRefGoogle Scholar
  23. 23.
    Zhou, A., Sun, J., Zhang, Q.: An estimation of distribution algorithm with cheap and expensive local search methods. IEEE Trans. Evol. Comput. 19(6), 807–822 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.South China University of TechnologyGuangzhouChina

Personalised recommendations