Skip to main content

Two Matrix-Type Projection Neural Networks for Solving Matrix-Valued Optimization Problems

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11302))

Included in the following conference series:

Abstract

In recent years, matrix-valued optimization algorithms have been studied to enhance the computational performance of vector-valued optimization algorithms. This paper presents two matrix-type projection neural networks, continuous-time and discrete-time models, for solving matrix-valued optimization problems. The proposed continuous-time neural network may be viewed as a significant extension to the vector-type double projection neural network. More importantly, the proposed discrete-time projection neural network can be parallelly implemented in terms of matrix state space. Under pseudo-monotonicity condition and Lipschitz continuous condition, it is guaranteed that the two proposed matrix-type projection neural networks are globally convergent to the optimal solution. Finally, computed examples show that the two proposed matrix-type projection neural networks are much superior to the vector-type projection neural network in computation speed.

This work is supported by the National Natural Science Foundation of China under Grant No. 61473330.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalouptsidis, N.: Signal Processing Systems: Theory and Design. Wiley-Interscience, New York (1997)

    Google Scholar 

  2. Mohammed, J.L., Hummel, R.A., Zucker, S.W.: A gradient projection algorithm for relaxation methods. IEEE Trans. Pattern Anal. Mach. Intell. 5, 330–332 (1983)

    Article  Google Scholar 

  3. Grant, M., Boyd, S., Ye, Y.: Disciplined Convex Programming. Springer, Boston (2006). https://doi.org/10.1007/0-387-30528-9_7

    Book  MATH  Google Scholar 

  4. Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999)

    Article  MathSciNet  Google Scholar 

  5. Xia, Y.: A new neural network for solving linear programming problems and its application. IEEE Trans. Neural Netw. 7, 525–529 (1996)

    Article  Google Scholar 

  6. Xia, Y., Wang, J.: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints. IEEE Trans. Circ. Syst. I Regul. Pap. 51, 1385–1394 (2004)

    Article  MathSciNet  Google Scholar 

  7. Xia, Y.: A compact cooperative recurrent neural network for computing general constrained \(L_1\) norm estimators. IEEE Trans. Sig. Process. 57(9), 3693–3697 (2009)

    Article  MathSciNet  Google Scholar 

  8. Xia, Y., Wang, J.: A general methodology for designing globally convergent optimization neural networks. IEEE Trans. Neural Netw. 9, 1331–1343 (1998)

    Article  Google Scholar 

  9. Liu, Q., Wang, J.: A one-layer recurrent neural network for non-smooth convex optimization subject to linear equality constraints. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5507, pp. 1003–1010. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03040-6_122

    Chapter  Google Scholar 

  10. Kennedy, M.P., Chua, L.O.: Neural networks for nonlinear programming. IEEE Trans. Circ. Syst. 35, 554–562 (1988)

    Article  MathSciNet  Google Scholar 

  11. Rodriguez-Vazquez, A., Dominguez-Castro, R., Rueda, A., Huertas, J.L.: Nonlinear switched capacitor neural networks for optimization problems. IEEE Trans. Circ. Syst. 37, 384–398 (1990)

    Article  MathSciNet  Google Scholar 

  12. Zhang, S., Constantinides, A.G.: Lagrange programming neural networks. IEEE Trans. Circ. Syst. II Analog Digit. Sig. Process. 39, 441–452 (1992)

    Article  Google Scholar 

  13. Xia, Y., Leung, H., Wang, J.: A projection neural network and its application to constrained optimization problems. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 49, 447–458 (2002)

    Article  MathSciNet  Google Scholar 

  14. Xia, Y., Feng, G., Wang, J.: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. IEEE Trans. Neural Netw. 19, 1340–53 (2008)

    Article  Google Scholar 

  15. Xia, Y.: An extended projection neural network for constrained optimization. Neural Comput. 16, 863–883 (2004)

    Article  Google Scholar 

  16. Xia, Y., Wang, J.: Solving variational inequality problems with linear constraints based on a novel recurrent neural network. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4493, pp. 95–104. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72395-0_13

    Chapter  Google Scholar 

  17. Xia, Y., Wang, J.: A bi-projection neural network for solving constrained quadratic optimization problems. IEEE Trans. Neural Netw. Learn. Syst. 27, 214–224 (2016)

    Article  MathSciNet  Google Scholar 

  18. Xia, Y.S.: New cooperative projection neural network for nonlinearly constrained variational inequality. Sci. China 52, 1766–1777 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Cheng, L., Hou, Z.G., Lin, Y., et al.: Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks. IEEE Trans. Neural Netw. 22, 714–726 (2011)

    Article  Google Scholar 

  20. Eshaghnezhad, M., Effati, S., Mansoori, A.: A neurodynamic model to solve nonlinear pseudo-monotone projection equation and its applications. IEEE Trans. Cybern. 47, 3050–3062 (2016)

    Article  Google Scholar 

  21. Xia, Y., Chen, T., Shan, J.: A novel iterative method for computing generalized inverse. Neural Comput. 26(2), 449–465 (2014)

    Article  MathSciNet  Google Scholar 

  22. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  23. Li, Z., Cheng, H., Guo, H.: General recurrent neural network for solving generalized linear matrix equation. Complexity 3, 1–7 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Bouhamidi, A., Jbilou, K., Raydan, M.: Convex constrained optimization for large-scale generalized Sylvester equations. Comput. Optim. Appl. 48(2), 233–253 (2011)

    Article  MathSciNet  Google Scholar 

  25. Shi, Q.B., Xia, Y.S.: Fast multi-channel image reconstruction using a novel two-dimensional algorithm. Multimedia Tools Appl. 71, 2015–2028 (2014)

    Article  Google Scholar 

  26. Li, J.F., Li, W., Huang, R.: An efficient method for solving a matrix least squares problem over a matrix inequality constraint. Comput. Optim. Appl. 63(2), 393–423 (2016)

    Article  MathSciNet  Google Scholar 

  27. Bouhamidi, A.: A Kronecker approximation with a convex constrained optimization method for blind image restoration. Optim. Lett. 6, 1251–1264 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youshen Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, L., Xia, Y., Zhang, S. (2018). Two Matrix-Type Projection Neural Networks for Solving Matrix-Valued Optimization Problems. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11302. Springer, Cham. https://doi.org/10.1007/978-3-030-04179-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04179-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04178-6

  • Online ISBN: 978-3-030-04179-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics