Modeling the Respiratory Central Pattern Generator with Resonate-and-Fire Izhikevich-Neurons

  • Pavel TolmachevEmail author
  • Rishi R. Dhingra
  • Michael Pauley
  • Mathias Dutschmann
  • Jonathan H. Manton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11301)


Computational models of the respiratory central pattern generator (rCPG) are usually based on biologically-plausible Hodgkin Huxley neuron models. Such models require numerous parameters and thus are prone to overfitting. The HH approach is motivated by the assumption that the biophysical properties of neurons determine the network dynamics. Here, we implement the rCPG using simpler Izhikevich resonate-and-fire neurons. Our rCPG model generates a 3-phase respiratory motor pattern based on established connectivities and can reproduce previous experimental and theoretical observations. Further, we demonstrate the flexibility of the model by testing whether intrinsic bursting properties are necessary for rhythmogenesis. Our simulations demonstrate that replacing predicted mandatory bursting properties of pre-inspiratory neurons with spike adapting properties yields a model that generates comparable respiratory activity patterns. The latter supports our view that the importance of the exact modeling parameters of specific respiratory neurons is overestimated.


Respiratory central pattern generator Rhythm generation Resonate-and-fire neurons Brainstem 


  1. 1.
    Feldman, J.L.: Neurophysiology of breathing in mammals. Handb. Physiol. Nerv. Syst. Am. Physiol. Soc. Sect. 1, 463–524 (1986)Google Scholar
  2. 2.
    Dutschmann, M., Paton, J.F.: Inhibitory synaptic mechanisms regulating upper airway patency. Respir. Physiol. Neurobiol. 131(1-2), 57–63 (2002)CrossRefGoogle Scholar
  3. 3.
    Dutschmann, M., Jones, S.E., Subramanian, H.H., Stanic, D., Bautista, T.G.: The physiological significance of postinspiration in respiratory control. In: Progress in brain research, vol. 212, pp. 113–130. Elsevier (2014)Google Scholar
  4. 4.
    Richter, D.W.: Generation and maintenance of the respiratory rhythm. J. Exp. Biol. 100(1), 93–107 (1982)Google Scholar
  5. 5.
    Richter, D.W., Spyer, K.M.: Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci. 24(8), 464–472 (2001)CrossRefGoogle Scholar
  6. 6.
    Feldman, J.L., Del Negro, C.A.: Looking for inspiration: new perspectives on respiratory rhythm. Nature Rev. Neurosci. 7(3), 232 (2006)CrossRefGoogle Scholar
  7. 7.
    Rybak, I.A., Abdala, A.P., Markin, S.N., Paton, J.F., Smith, J.C.: Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Prog. Brain Res. 165, 201–220 (2007)CrossRefGoogle Scholar
  8. 8.
    Dutschmann, M., Dick, T.E.: Pontine mechanisms of respiratory control. Compr. Physiol. 2(4), 2443 (2012)Google Scholar
  9. 9.
    Smith, J.C., Abdala, A.P., Borgmann, A., Rybak, I.A., Paton, J.F.: Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci. 36(3), 152–162 (2013)CrossRefGoogle Scholar
  10. 10.
    Anderson, T.M., Ramirez, J.M.: Respiratory rhythm generation: triple oscillator hypothesis. F1000Research 6, 139 (2017)CrossRefGoogle Scholar
  11. 11.
    Del Negro, C.A., Funk, G.D., Feldman, J.L.: Breathing matters. Nat. Rev. Neurosci. 19, 351–367 (2018)CrossRefGoogle Scholar
  12. 12.
    Butera Jr., R.J., Rinzel, J., Smith, J.C.: Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82(1), 382–397 (1999)CrossRefGoogle Scholar
  13. 13.
    Butera Jr., R.J., Rinzel, J., Smith, J.C.: Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations of coupled pacemaker neurons. J. Neurophysiol. 82(1), 398–415 (1999)CrossRefGoogle Scholar
  14. 14.
    Del Negro, C.A., Johnson, S.M., Butera, R.J., Smith, J.C.: Models of respiratory rhythm generation in the pre-Botzinger complex. III. Experimental tests of model predictions. J. Neurophysiol. 86(1), 59–74 (2001)CrossRefGoogle Scholar
  15. 15.
    Ogilvie, M.D., Gottschalk, A., Anders, K., Richter, D.W., Pack, A.I.: A network model of respiratory rhythmogenesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 263(4), R962–R975 (1992)CrossRefGoogle Scholar
  16. 16.
    Smith, J.C., Abdala, A.P.L., Koizumi, H., Rybak, I.A., Paton, J.F.: Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms. J. Neurophysiol. 98(6), 3370–3387 (2007)CrossRefGoogle Scholar
  17. 17.
    Rybak, I.A., et al.: Modeling the ponto-medullary respiratory network. Respir. Physiol. Neurobiol. 143(2–3), 307–319 (2004)CrossRefGoogle Scholar
  18. 18.
    Molkov, Y.I., Bacak, B.J., Dick, T.E., Rybak, I.A.: Control of breathing by interacting pontine and pulmonary feedback loops. Front. Neural Circ. 7, 16 (2013)Google Scholar
  19. 19.
    Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., Feldman, J.L.: Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254(5032), 726–729 (1991)CrossRefGoogle Scholar
  20. 20.
    Del Negro, C.A., Morgado-Valle, C., Feldman, J.L.: Respiratory rhythm: an emergent network property? Neuron 34(5), 821–830 (2002)CrossRefGoogle Scholar
  21. 21.
    Schulz, D.J., Goaillard, J.M., Marder, E.: Variable channel expression in identified single and electrically coupled neurons in different animals. Nat. Neurosci. 9(3), 356 (2006)CrossRefGoogle Scholar
  22. 22.
    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jones, S.E., Dutschmann, M.: Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat. J. Neurophysiol. 115(5), 2593–2607 (2016)CrossRefGoogle Scholar
  24. 24.
    Dhingra, R.R., Jacono, F.J., Fishman, M., Loparo, K.A., Rybak, I.A., Dick, T.E.: Vagal-dependent nonlinear variability in the respiratory pattern of anesthetized, spontaneously breathing rats. J. Appl. Physiol. 111(1), 272–284 (2011)CrossRefGoogle Scholar
  25. 25.
    Rubin, J.E., Shevtsova, N.A., Ermentrout, G.B., Smith, J.C., Rybak, I.A.: Multiple rhythmic states in a model of the respiratory central pattern generator. J. Neurophysiol. 101(4), 2146–2165 (2009)CrossRefGoogle Scholar
  26. 26.
    Dhingra, R.R., Dutschmann, M., Galán, R.F., Dick, T.E.: Kölliker-Fuse nuclei regulate respiratory rhythm variability via a gain-control mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312(2), R172–R188 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringUniversity of MelbourneParkvilleAustralia
  2. 2.Florey Institute of Neuroscience and Mental HealthParkvilleAustralia

Personalised recommendations