Skip to main content

A Deep Ensemble Network for Compressed Sensing MRI

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11301))

Included in the following conference series:

Abstract

Compressed sensing theory has been proven to accelerate magnetic resonance imaging by measuring less K-space data called CS-MRI. Conventional sparse-optimization based CS-MRI methods lack enough capacity to encode rich patterns within the MR images and the iterative optimization for sparse recovery is often time-consuming. Although the deep convolutional neural network (CNN) models have achieved the state-of-the-art performance on CS-MRI reconstruction recently, the fine structure details can be degraded due to the information loss when the network goes deep. In order to better transfer the information in lossless way, we design deep ensemble network (DEN) architecture inspired by the novel interpretation of deep neural network in ensemble respect. The DEN model is formed by cascaded basic blocks for CS-MRI. Within the blocks, information flows forward through different depth. The intermediate outputs reconstructed by each block are merged via \(3\times 3\) convolution to generate the final reconstruction result. The experimental results show the proposed DEN model outperforms other state-of-the-art nondeep and deep CS-MRI models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Sig. Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  2. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med.: Official J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  3. Qu, X., et al.: Undersampled MRI reconstruction with patch-based directional wavelets. Magn. Reson. Imaging 30(7), 964–977 (2012)

    Article  Google Scholar 

  4. Lai, Z., et al.: Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med. Image Anal. 27, 93–104 (2016)

    Article  Google Scholar 

  5. Ravishankar, S.: Magnetic resonance image reconstruction from highly undersampled K-space data using dictionary learning (2011)

    Google Scholar 

  6. Huang, Y., Paisley, J., Lin, Q., Ding, X., Fu, X., Zhang, X.P.: Bayesian nonparametric dictionary learning for compressed sensing MRI. IEEE Trans. Image Process. 23(12), 5007–5019 (2014)

    Article  MathSciNet  Google Scholar 

  7. Ravishankar, S., Bresler, Y.: Sparsifying transform learning for compressed sensing MRI. In: 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI), pp. 17–20. IEEE (2013)

    Google Scholar 

  8. Qu, X., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z.: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med. Image Anal. 18(6), 843–856 (2014)

    Article  Google Scholar 

  9. Wang, S., et al.: Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514–517. IEEE (2016)

    Google Scholar 

  10. Lee, D., Yoo, J., Ye, J.C.: Deep residual learning for compressed sensing MRI. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 15–18. IEEE (2017)

    Google Scholar 

  11. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  12. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for MR image reconstruction. arXiv preprint arXiv:1703.00555 (2017)

  13. Breiman, L.: Stacked regressions. Mach. Learn. 24(1), 49–64 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: ICML, vol. 96, pp. 148–156. Citeseer (1996)

    Google Scholar 

  16. Drucker, H., Cortes, C., Jackel, L.D., LeCun, Y., Vapnik, V.: Boosting and other ensemble methods. Neural Comput. 6(6), 1289–1301 (1994)

    Article  Google Scholar 

  17. Veit, A., Wilber, M.J., Belongie, S.: Residual networks behave like ensembles of relatively shallow networks. In: Advances in Neural Information Processing Systems, pp. 550–558 (2016)

    Google Scholar 

  18. Larsson, G., Maire, M., Shakhnarovich, G.: FractalNet: ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648 (2016)

  19. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, vol. 1, p. 3 (2017)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  22. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  23. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghao Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, H., Wu, Y., Sun, L., Cai, C., Huang, Y., Ding, X. (2018). A Deep Ensemble Network for Compressed Sensing MRI. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04167-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04166-3

  • Online ISBN: 978-3-030-04167-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics