Advertisement

Likelihood Informed Dimension Reduction for Remote Sensing of Atmospheric Constituent Profiles

  • Otto LamminpääEmail author
  • Marko Laine
  • Simo Tukiainen
  • Johanna Tamminen
Chapter
Part of the MATRIX Book Series book series (MXBS, volume 2)

Abstract

We use likelihood informed dimension reduction (LIS) (Cui et al. Inverse Prob 30(11):114015, 28, 2014) for inverting vertical profile information of atmospheric methane from ground based Fourier transform infrared (FTIR) measurements at Sodankylä, Northern Finland. The measurements belong to the word wide TCCON network for greenhouse gas measurements and, in addition to providing accurate greenhouse gas measurements, they are important for validating satellite observations.

LIS allows construction of an efficient Markov chain Monte Carlo sampling algorithm that explores only a reduced dimensional space but still produces a good approximation of the original full dimensional Bayesian posterior distribution. This in effect makes the statistical estimation problem independent of the discretization of the inverse problem. In addition, we compare LIS to a dimension reduction method based on prior covariance matrix truncation used earlier (Tukiainen et al., J Geophys Res Atmos 121:10312–10327, 2016).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Dr. Rigel Kivi from FMI Arctic Research Centre, Sodankylä, Finland for the AirCore and TCCON data. We thank Dr. Tiangang Cui from Monash University and the mathematical research institute MATRIX in Australia for organizing a workshop where a part of this research was performed. This work has been supported by Academy of Finland (projects INQUIRE, IIDA-MARI and CoE in Inverse Modelling and Imaging) and by EU’s Horizon 2020 research and innovation programme (project GAIA-CLIM).

References

  1. 1.
    Bernath, P.F., McElroy, C.T., Abrams, M.C., Boone, C.D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.F., Colin, R., DeCola, P., DeMazière, M., Drummond, J.R., Dufour, D., Evans, W.F.J., Fast, H., Fussen, D., Gilbert, K., Jennings, D.E., Llewellyn, E.J., Lowe, R.P., Mahieu, E., McConnell, J.C., McHugh, M., McLeod, S.D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C.P., Rochon, Y.J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J.J., Soucy, M.A., Strong, K., Tremblay, P., Turnbull, D., Walker, K.A., Walkty, I., Wardle, D.A., Wehrle, V., Zander, R., Zou, J.: Atmospheric chemistry experiment (ACE): mission overview. Geophys. Res. Lett. 32(15) (2005). https://doi.org/10.1029/2005GL022386
  2. 2.
    Cui, T., Martin, J., Marzouk, Y.M., Solonen, A., Spantini, A.: Likelihood-informed dimension reduction for nonlinear inverse problems. Inverse Prob. 30(11), 114015, 28 (2014). https://doi.org/10.1088/0266-5611/30/11/114015
  3. 3.
    Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Parker, R., Guerlet, S., Aben, I., Blumenstock, T., Burrows, J.P., Butz, A., Deutscher, N.M., Frankenberg, C., Hase, F., Hasekamp, O.P., Heymann, J., De Mazière, M., Notholt, J., Sussmann, R., Warneke, T., Griffith, D., Sherlock, V., Wunch, D.: The greenhouse gas climate change initiative (GHG-CCI): comparative validation of GHG-CCI CHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON. Atmos. Meas. Tech. 7(6), 1723–1744 (2014).  https://doi.org/10.5194/amt-7-1723-2014
  4. 4.
    Feldman, D.R., Collins, W.D., Gero, P.J., Torn, M.S., Mlawer, E.J., Shippert, T.R.: Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature 519, 339–343 (2015).  https://doi.org/10.1038/nature14240 CrossRefGoogle Scholar
  5. 5.
    Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7(2), 223–242 (2001). https://doi.org/10.2307/3318737 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: Efficient adaptive MCMC. Stat. Comput. 16(4), 339–354 (2006). https://doi.org/10.1007/s11222-006-9438-0 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2005). https://doi.org/10.1007/b138659
  8. 8.
    Karion, A., Sweeney, C., Tans, P., Newberger, T.: Aircore: an innovative atmospheric sampling system. J. Atmos. Oceanic Technol. 27(11), 1839–1853 (2010). https://doi.org/10.1175/2010JTECHA1448.1 CrossRefGoogle Scholar
  9. 9.
    Kivi, R., Heikkinen, P.: Fourier transform spectrometer measurements of column CO2 at Sodankylä, Finland. Geosci. Instrum. Methods Data Syst. 5(2), 271–279 (2016). https://doi.org/10.5194/gi-5-271-2016 CrossRefGoogle Scholar
  10. 10.
    Laine, M.: MCMC Toolbox for Matlab (2013). http://helios.fmi.fi/~lainema/mcmc/
  11. 11.
    Ripley, B.D.: Stochastic Simulation. Wiley, New York (1987)CrossRefGoogle Scholar
  12. 12.
    Rodgers, C.D.: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  13. 13.
    Solonen, A., Cui, T., Hakkarainen, J., Marzouk, Y.: On dimension reduction in Gaussian filters. Inverse Prob. 32(4), 045003 (2016). https://doi.org/10.1088/0266-5611/32/4/045003 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Spantini, A., Solonen, A., Cui, T., Martin, J., Tenorio, L., Marzouk, Y.: Optimal low-rank approximations of Bayesian linear inverse problems. SIAM J. Sci. Comput. 37(6), A2451–A2487 (2015). https://doi.org/10.1137/140977308 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tukiainen, S.: Swirlab Toolbox for Matlab (2017). https://github.com/tukiains/swirlab
  16. 16.
    Tukiainen, S., Railo, J., Laine, M., Hakkarainen, J., Kivi, R., Heikkinen, P., Chen, H., Tamminen, J.: Retrieval of atmospheric CH4 profiles from Fourier transform infrared data using dimension reduction and MCMC. J. Geophys. Res. Atmos. 121, 10,312–10,327 (2016). https://doi.org/10.1002/2015JD024657 Google Scholar
  17. 17.
    Wunch, D., Toon, G.C., Sherlock, V., Deutscher, N.M., Liu, X., Feist, D.G., Wennberg, P.O.: The total carbon column observing network’s GGG2014 data version. Tech. rep., Oak Ridge, Tennessee, U.S.A., Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory (2015).  https://doi.org/10.14291/tccon.ggg2014.documentation.R0/1221662

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Otto Lamminpää
    • 1
    Email author
  • Marko Laine
    • 1
  • Simo Tukiainen
    • 1
  • Johanna Tamminen
    • 1
  1. 1.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations