Skip to main content

Number of Claims and Ruin Time for a Refracted Risk Process

  • Chapter
  • First Online:
2017 MATRIX Annals

Part of the book series: MATRIX Book Series ((MXBS,volume 2))

Abstract

In this paper, we consider a classical risk model refracted at given level. We give an explicit expression for the joint density of the ruin time and the cumulative number of claims counted up to ruin time. The proof is based on solving some integro-differential equations and employing the Lagrange’s Expansion Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Badescu, A., Drekic, S., Landriault, D.: Analysis of a threshold dividend strategy for a MAP risk model. Scand. Actuar. J. 4, 227–247 (2007)

    Article  MathSciNet  Google Scholar 

  2. De Finetti, B.: Su un’impostazione alternativa della teoria collettiva del rischio. In: Transactions of the XVth International Congress of Actuaries, pp. 433–443 (1957)

    Google Scholar 

  3. Dickson, D.C.M.: The joint distribution of the time to ruin and the number of claims until ruin in the classical risk model. Insur. Math. Econ. 50(3), 334–337 (2012)

    Article  MathSciNet  Google Scholar 

  4. Dickson, D.C.M., Hipp, C.: On the time to ruin for Erlang (2) risk processes. Insur. Math. Econ. 29(3), 333–344 (2001)

    Article  MathSciNet  Google Scholar 

  5. Dickson, D.C.M., Willmot, G.E.: The density of the time to ruin in the classical Poisson risk model. Astin Bull. 35(1), 45–60 (2005)

    Article  MathSciNet  Google Scholar 

  6. Frostig, E., Pitts, S.M., Politis, K.: The time to ruin and the number of claims until ruin for phase-type claims. Insur. Math. Econ. 51(1), 19–25 (2012)

    Article  MathSciNet  Google Scholar 

  7. Gao, H., Yin, C.: The perturbed Sparre Andersen model with a threshold dividend strategy. J. Comput. Appl. Math. 220(1–2), 394–408 (2008)

    Article  MathSciNet  Google Scholar 

  8. Gerber, H.U., Shiu, E.S.W.: The time value of ruin in a Sparre Andersen model. North Am. Actuar. J. 9(2), 49–69 (2005)

    Article  MathSciNet  Google Scholar 

  9. Kyprianou, A.E., Loeffen, R.L.: Refracted Lévy processes. Ann. Inst. H. Poincaré Probab. Stat. 46(1), 24–44 (2010)

    Article  Google Scholar 

  10. Lagrange, J.L.: Nouvelle méthode pour résoudre les équations littérales par le moyen des séries. Chez Haude et Spener, Libraires de la Cour & de l’Académie royale (1770)

    Google Scholar 

  11. Landriault, D., Shi, T., Willmot, G.E.: Joint densities involving the time to ruin in the Sparre Andersen risk model under exponential assumptions. Insur. Math. Econ. 49(3), 371–379 (2011)

    Article  MathSciNet  Google Scholar 

  12. Li, S., Garrido, J.: On a class of renewal risk models with a constant dividend barrier. Insur. Math. Econ. 35(3), 691–701 (2004)

    Article  MathSciNet  Google Scholar 

  13. Li, S., Garrido, J.: On ruin for the Erlang (n) risk process. Insur. Math. Econ. 34(3), 391–408 (2004)

    Article  MathSciNet  Google Scholar 

  14. Li, S., Lu, Y.: The distribution of total dividend payments in a Sparre Andersen model. Statist. Probab. Lett. 79(9), 1246–1251 (2009)

    Article  MathSciNet  Google Scholar 

  15. Li, S., Lu, Y.: On the time and the number of claims when the surplus drops below a certain level. Scand. Actuar. J. 5, 420–445 (2016)

    Article  MathSciNet  Google Scholar 

  16. Lin, X.S., Pavlova, K.P.: The compound Poisson risk model with a threshold dividend strategy. Insur. Math. Econ. 38(1), 57–80 (2006)

    Article  MathSciNet  Google Scholar 

  17. Lin, X.S., Willmot, G.E., Drekic, S.: The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function. Insur. Math. Econ. 33(3), 551–566 (2003)

    Article  MathSciNet  Google Scholar 

  18. Lu, Y., Li, S.: The Markovian regime-switching risk model with a threshold dividend strategy. Insur. Math. Econ. 44(2), 296–303 (2009)

    Article  MathSciNet  Google Scholar 

  19. Willmot, G.E., Dickson, D.C.M.: The Gerber-Shiu discounted penalty function in the stationary renewal risk model. Insur. Math. Econ. 32(3), 403–411 (2003)

    Article  MathSciNet  Google Scholar 

  20. Zhao, C., Zhang, C.: Joint density of the number of claims until ruin and the time to ruin in the delayed renewal risk model with Erlang (n) claims. J. Comput. Appl. Math. 244, 102–114 (2013)

    Article  MathSciNet  Google Scholar 

  21. Zhou, X.: On a classical risk model with a constant dividend barrier. North Am. Actuar. J. 9(4), 95–108 (2005)

    Article  MathSciNet  Google Scholar 

  22. Zhu, J., Yang, H.: Ruin theory for a Markov regime-switching model under a threshold dividend strategy. Insur. Math. Econ. 42(1), 311–318 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Chunming Zhao is supported by the Fundamental Research Funds for the Central Universities (Grant No. 2682017CX065) and by the FP7 Grant PIRSES-GA-2012-318984. Zbigniew Palmowski is supported by the National Science Centre under the grant 2013/09/B/HS4/01496. Zbigniew Palmowski thanks the organizers of the wonderful program Mathematics of Risk for all work done to make this event happened. In particular, he is grateful to Kostya Borovkov (University of Melbourne) and Kais Hamza (Monash University) for all the help and nice discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Palmowski, Z., Zhao, C., Zhang, C. (2019). Number of Claims and Ruin Time for a Refracted Risk Process. In: de Gier, J., Praeger, C., Tao, T. (eds) 2017 MATRIX Annals. MATRIX Book Series, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-04161-8_49

Download citation

Publish with us

Policies and ethics