CY-Operators and L-Functions

  • Duco van StratenEmail author
Part of the MATRIX Book Series book series (MXBS, volume 2)


This a write up of a talk given at the MATRIX conference at Creswick in 2017 (to be precise, on Friday, January 20, 2017). It reports on work in progress with P. Candelas and X. de la Ossa. The aim of that work is to determine, under certain conditions, the local Euler factors of the L-functions of the fibres of a family of varieties without recourse to the equations of the varieties in question, but solely from the associated Picard–Fuchs equation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



A great thank to the organisers Masha, Ling and Wadim!


  1. 1.
    Almkvist, G.: The Art of Finding Calabi–Yau Differential Equations. Dedicated to the 90-th Birthday of Lars Gårding. Gems in Experimental Mathematics. Contemporary Mathematics, vol. 517, pp. 1–18. American Mathematical Society, Providence (2010)Google Scholar
  2. 2.
    Almkvist, G., van Straten, D.: Update on Calabi–Yau operators, in preparationGoogle Scholar
  3. 3.
    Almkvist, G., Zudilin, W.: Differential equations, mirror maps and zeta values. In: Mirror symmetry. V, 481515, AMS/IP Studies in Advanced Mathematics, vol. 38. American Mathematical Society, Providence (2006)Google Scholar
  4. 4.
    Almkvist, G., van Enckevort, C., van Straten, D., Zudilin, W.: Tables of Calabi–Yau operators (2010). arXiv:math/0507430Google Scholar
  5. 5.
    André, Y.: G-functions and geometry. Aspects of Mathematics, E13. Friedr. Vieweg & Sohn, Braunschweig (1989)Google Scholar
  6. 6.
    Bogner, M.: On differential operators of Calabi–Yau type, Thesis, Mainz (2012)Google Scholar
  7. 7.
    Bogner, M.: Algebraic characterization of differential operators of Calabi–Yau type. arXiv:math.AG 1304.5434Google Scholar
  8. 8.
    Candelas, P., de la Ossa, X., Green, P., Parkes, L.: An exactly soluble superconformal theory from a mirror pair of Calabi–Yau manifolds. Phys. Lett. B 258(1–2), 118–126 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Candelas, P., de la Ossa, X., van Straten, D.: Local Euler factors from Picard–Fuchs equations, in preparationGoogle Scholar
  10. 10.
  11. 11.
    Cox, D., Katz, S.: Mirror symmetry and algebraic geometry. Mathematical Surveys and Monographs, vol. 68. American Mathematical Society, Providence (1999)Google Scholar
  12. 12.
    Delaygue, E.: A criterion for the integrality of the Taylor coefficients of mirror maps in several variables. Adv. Math. 234, 414–452 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Deligne, P.: Local Behavior of Hodge Structures at Infinity, Mirror Symmetry II. Studies in Advanced Mathematics, vol. 1, pp. 683–699. American Mathematical Society/International Press, Providence (1997)Google Scholar
  14. 14.
    Dieulefait, L.: On the modularity of rigid Calabi–Yau threefolds: epilogue. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377, 44–49 (2010), Issledovaniya po Teorii Chisel. 10, 44–49, 241; translation in J. Math. Sci. (N.Y.) 171 (2010), no. 6, 725–727Google Scholar
  15. 15.
    Dwork, B.: On the zeta function of a hypersurface, III. Ann. Math. (2) 83, 457–519 (1966)Google Scholar
  16. 16.
    Dwork, B.: p-adic cycles. Inst. Hautes Études Sci. Publ. Math. 37, 27–115 (1969)Google Scholar
  17. 17.
    Gouvêa, F., Yui, N.: Rigid Calabi–Yau threefolds over \({\mathbb {Q}}\) are modular. Expo. Math. 29(1), 142–149 (2011)Google Scholar
  18. 18.
    Gray, J.: Fuchs and the theory of differential equations. Bull. Am. Math. Soc. (New series) 10, 1–26 (1984)Google Scholar
  19. 19.
    Ince, E.: Ordinary Differential Equations. Longmans, Green and Co. Ltd., New York (1927)zbMATHGoogle Scholar
  20. 20.
    Katz, N.: Travaux de Dwork (French) Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 409. Lecture Notes in Mathematics, vol. 317, pp. 167–200. Springer, Berlin (1973)Google Scholar
  21. 21.
    Krattenthaler, C.: On the integrality of Taylor coefficients of mirror maps. Duke Math. J. 151, 175–218 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mellit, A., Vlasenko, M.: Dwork’s congruences for the constant terms of powers of a Laurent polynomial. Int. J. Number Theory 12(2), 313–321 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Meyer, C.: Modular Calabi–Yau threefolds. Fields Institute Monographs, vol. 22, American Mathematical Society, Providence (2005)Google Scholar
  24. 24.
    Morrison, D.R.: Geometric Aspects of Mirror Symmetry. Mathematics Unlimited 2001 and Beyond, pp. 899–918. Springer, Berlin (2001)Google Scholar
  25. 25.
    Peters, C., Steenbrink, J.: Mixed Hodge Structures. Ergebnisse der Mathematik und ihre Grenzgebiete, 3. Folge, Springer, Berlin (2008)Google Scholar
  26. 26.
    Samol, K.: Frobenius Polynomial for Calabi–Yau Equations, Thesis, Mainz (2010)Google Scholar
  27. 27.
    Samol, K., van Straten, D.: Frobenius polynomials for Calabi–Yau equations. Commun. Number Theory Phys. 2(3), 537–561 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Samol, K., van Straten, D.: Dwork congruences and reflexive polytopes. Ann. Math. Qué. 39, 185–203 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schoen, C.: On the geometry of a special determinantal hypersurface associated to the Mumford-Horrocks vector bundle. J. Reine Angew. Math. 364, 85–111 (1986)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Steenbrink, J.: Limits of Hodge structures. Invent. Math. 31, 229–257 (1976)MathSciNetCrossRefGoogle Scholar
  31. 31.
    van Straten, D.: Calabi–Yau operators. arXiv:1704.00164 [math.AG]Google Scholar
  32. 32.
    Verrill, H.: Root lattices and pencils of varieties. J. Math. Kyoto Univ. 36(2), 423–446 (1996)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Voisin, C.: Symmetrie mirroir. Panorama et synthése, Soc. Math. France, translated as: Mirror Symmetry. American Mathematical Society, Providence (1999)Google Scholar
  34. 34.
    Vologodsky, V.: On the N-Integrality of instanton numbers (2008). arXiv:0707.4617 [math.AG]Google Scholar
  35. 35.
    Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995)Google Scholar
  36. 36.
    Wiles, A.: Modular forms, elliptic curves, and Fermat’s last theorem. In: Proceedings of the International Congress of Mathematicians (Zürich, 1994), vols. 1, 2, pp. 243–245. Birkhäuser, Basel (1995)Google Scholar
  37. 37.
    Yui, N.: Modularity of Calabi–Yau Varieties: 2011 and Beyond. Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds. Fields Institute Communications, vol. 67, pp. 101–139. Springer, New York (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Johannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations