A Set Optimization Technique for Domain Reconstruction from Single-Measurement Electrical Impedance Tomography Data

  • Bastian Harrach
  • Janosch RiegerEmail author
Part of the MATRIX Book Series book series (MXBS, volume 2)


We propose and test a numerical method for the computation of the convex source support from single-measurement electrical impedance tomography data. Our technique is based on the observation that the convex source support is the unique minimum of an optimization problem in the space of all convex and compact subsets of the imaged body.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ammari, H., Griesmaier, R., Hanke, M.: Identification of small inhomogeneities: asymptotic factorization. Math. Comp. 76(259), 1425–1448 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Springer Science & Business Media, Dordrecht (1996)CrossRefGoogle Scholar
  3. 3.
    Hanke, M, Hyvönen, N, Reusswig, S.: Convex source support and its applications to electric impedance tomography. SIAM J. Imaging Sci. 1(4), 364–378 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Harrach, B.: Recent progress on the factorization method for electrical impedance tomography. Comput. Math. Methods Med. 8 (2013), Art. ID 425184Google Scholar
  5. 5.
    Kusiak, S, Sylvester, J.: The scattering support. Commun. Pure Appl. Math. 56(11), 1525–1548 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lasserre, J.B.: Integration on a convex polytope. Proc. Am. Math. Soc. 126(8), 2433–2441 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Müller, C, Feuer, A, Goodwin, G.C.: Derivative of an integral over a convex polytope. Appl. Math. Lett. 24(7), 1120–1123 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Rieger, J.: Discretizations of linear elliptic partial differential inclusions. Numer. Funct. Anal. Optim. 32(8), 904–925 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Goethe University Frankfurt, Institute for MathematicsFrankfurt am MainGermany
  2. 2.Monash UniversitySchool of Mathematical SciencesClaytonAustralia

Personalised recommendations