Advertisement

Cluster Decorated Geometric Crystals, Generalized Geometric RSK-Correspondences, and Donaldson-Thomas Transformations

  • Gleb Koshevoy
Chapter
Part of the MATRIX Book Series book series (MXBS, volume 2)

Abstract

For a simply connected, connected, semisimple complex algebraic group G, we define two geometric crystals on the \(\mathscr A\)-cluster variety of double Bruhat cell B∩ Bw0B. These crystals are related by the ∗ duality. We define the graded Donaldson-Thomas correspondence as the crystal bijection between these crystals. We show that this correspondence is equal to the composition of the cluster chamber Ansatz, the inverse generalized geometric RSK-correspondence, and transposed twist map due to Berenstein and Zelevinsky.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

I thank Arkady Berenstein, Volker Genz and Bea Schumann for inspired and fruitful discussions, organizers of the MATRIX workshop, and especially Paul Zinn-Justin, and the RSF grant 16-11-10075 for financial support.

References

  1. 1.
    Berenstein, A., Kazhdan, D.: Geometric and unipotent crystals II: from unipotent bicrystals to crystal bases. Contemporary Mathematics, vol. 433, pp. 13–88. American Mathematical Society, Providence (2007)Google Scholar
  2. 2.
    Berenstein, A., Zelevinsky, A.: Total positivity in Schubert varieties. Comment. Math. Helv. 72(1), 128–166 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143, 77–128 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berenstein, A., Fomin, S., Zelevinsky, A.: Parametrizations of canonical bases and totally positive matrices (with S. Fomin and A. Zelevinsky). Adv. Math. 122, 49–149 (1996)Google Scholar
  5. 5.
    Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras III: upper bounds and double Bruhat cells (2004). arXiv:math/0305434v3Google Scholar
  6. 6.
    Berenstein, A., Kirillov, A., Koshevoy, G.: Generalized RSK correspondences, Obervolfach reports, 23/2015, 1303–1305Google Scholar
  7. 7.
    Danilov, V., Karzanov, A., Koshevoy, G.: Tropical Plúcker functions and Kashiwara crystals. Contemporary Mathematics, vol. 616, pp. 77–100. American Mathematical Society, Providence (2014)Google Scholar
  8. 8.
    Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Genz, V., Koshevoy, G., Schumann, B.: Combinatorics of canonical bases revisited: type A (2017). arXiv:1611.03465Google Scholar
  10. 10.
    Genz, V., Koshevoy, G., Schumann, B.: Polyhedral parametrizations of canonical bases & cluster duality (2017). arXiv:1711.07176Google Scholar
  11. 11.
    Goncharov, A., Shen, L.: Donaldson-Thomas trasnsformations of moduli spaces of G-local systems (2016). arXiv:1602.06479Google Scholar
  12. 12.
    Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras, preprint (2014). arXiv:1411.1394v2 [math.AG]Google Scholar
  13. 13.
    Kashiwara, M.: On crystal bases. In: Representations of Groups (Banff, AB, 1994). CMS Conference Proceedings, vol. 16, pp. 155–197. American Mathematical Society, Providence (1995)Google Scholar
  14. 14.
    Lee, K., Schiffler, R.: Positivity for cluster algebras. Ann. Math. 182, 73–125 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lusztig, G.: Introduction to Quantum Groups. Progress in Mathematics, vol. 110. Birkháuser, Boston (1993)Google Scholar
  16. 16.
    Lusztig, G.: Total positivity in reductive groups. In: Lie Theory and Geometry. Progress in Mathematics, vol. 123, pp. 531–568. Birkháuser, Boston (1994)Google Scholar
  17. 17.
    Lusztig, G.: Piecewise linear parametrization of canonical bases (2008). arXiv:0807.2824Google Scholar
  18. 18.
    Nakashima, T.: Decorations on geometric crystals and monomial realizations of crystal bases for classical groups. J. Algebra 399, 712–769 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nakashima, T., Zelevinsky, A.V.: Polyhedral realizations of crystal bases for quantized Kac-Moody algebras. Adv. Math. 131, 253–278 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Weng, D.: Donaldson-Thomas transformation of double Bruhat cells in semisimple lie groups (2016). arXiv:1611.04186Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gleb Koshevoy
    • 1
  1. 1.IITP RASMCCME, and Interdisciplinary Scientific Center J.-V. PonceletMoscowRussia

Personalised recommendations