Skip to main content

Nonparametric Bayesian Volatility Estimation

  • Chapter
  • First Online:
2017 MATRIX Annals

Part of the book series: MATRIX Book Series ((MXBS,volume 2))

Abstract

Given discrete time observations over a fixed time interval, we study a nonparametric Bayesian approach to estimation of the volatility coefficient of a stochastic differential equation. We postulate a histogram-type prior on the volatility with piecewise constant realisations on bins forming a partition of the time interval. The values on the bins are assigned an inverse Gamma Markov chain (IGMC) prior. Posterior inference is straightforward to implement via Gibbs sampling, as the full conditional distributions are available explicitly and turn out to be inverse Gamma. We also discuss in detail the hyperparameter selection for our method. Our nonparametric Bayesian approach leads to good practical results in representative simulation examples. Finally, we apply it on a classical data set in change-point analysis: weekly closings of the Dow-Jones industrial averages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, E.: Modeling with Itô stochastic differential equations. Mathematical Modelling: Theory and Applications, vol. 22. Springer, Dordrecht (2007)

    Google Scholar 

  2. Batz, P., Ruttor, A., Opper, M.: Approximate Bayes learning of stochastic differential equations. Phys. Rev. E 98, 022109 (2018)

    MathSciNet  Google Scholar 

  3. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Björk, T.: Arbitrage Theory in Continuous Time, 3rd edn. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  5. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    MathSciNet  Google Scholar 

  6. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–332 (2002)

    Google Scholar 

  7. Cemgil, A.T., Dikmen, O.: Conjugate gamma Markov random fields for modelling nonstationary sources. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) International Conference on Independent Component Analysis and Signal Separation (ICA 2007), pp. 697–705. Springer, Berlin (2007)

    Google Scholar 

  8. Cemgil, A.T., Dikmen, O.: Inference and learning in gamma chains for Bayesian audio processing. J. Acoust. Soc. Am. 123(5), 3585–3585 (2008)

    Google Scholar 

  9. Cemgil, A.T., Févotte, C., Godsill, S.J.: Variational and stochastic inference for Bayesian source separation. Digital Signal Process. 17(5), 891–913 (2007). Special Issue on Bayesian Source Separation

    Google Scholar 

  10. Chen, J., Gupta, A.K.: Parametric Statistical Change Point Analysis, 2nd edn. Birkhäuser/Springer, New York (2012). With applications to genetics, medicine, and finance

    Google Scholar 

  11. Cox, J.C., Ingersoll Jr., J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53(2), 385–407 (1985)

    MathSciNet  MATH  Google Scholar 

  12. De Gregorio, A., Iacus, S.M.: Least squares volatility change point estimation for partially observed diffusion processes. Commun. Stat. Theory Methods 37(13–15), 2342–2357 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B: Methodol. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Díaz, J.: Bayesian detection of a change of scale parameter in sequences of independent gamma random variables. J. Econom. 19(1), 23–29 (1982)

    MathSciNet  MATH  Google Scholar 

  15. Dikmen, O., Cemgil, A.T.: Inference and parameter estimation in Gamma chains. Tech. Rep. CUED/F-INFENG/TR.596, University of Cambridge (2008)

    Google Scholar 

  16. Dikmen, O., Cemgil, A.T.: Gamma Markov random fields for audio source modeling. IEEE Trans. Audio Speech Lang. Process. 18(3), 589–601 (2010)

    Google Scholar 

  17. Donnet, S., Rivoirard, V., Rousseau, J., Scricciolo, C.: Posterior concentration rates for empirical Bayes procedures with applications to Dirichlet process mixtures. Bernoulli 24(1), 231–256 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1(3), 281–299 (1995)

    MATH  Google Scholar 

  20. Efron, B.: Large-scale inference, Institute of Mathematical Statistics (IMS) Monographs, vol. 1. Cambridge University Press, Cambridge (2010). Empirical Bayes methods for estimation, testing, and prediction

    Google Scholar 

  21. Elerian, O., Chib, S., Shephard, N.: Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69(4), 959–993 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Fearnhead, P.: Exact and efficient Bayesian inference for multiple changepoint problems. Stat. Comput. 16(2), 203–213 (2006)

    MathSciNet  Google Scholar 

  23. Feller, W.: Diffusion processes in genetics. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pp. 227–246. University of California Press, Berkeley (1951)

    Google Scholar 

  24. Feller, W.: Two singular diffusion problems. Ann. Math. 54(1), 173–182 (1951)

    MathSciNet  MATH  Google Scholar 

  25. Fuchs, C.: Inference for Diffusion Processes. Springer, Heidelberg (2013). With applications in life sciences, With a foreword by Ludwig Fahrmeir

    Google Scholar 

  26. Gelfand, A.E., Smith, A.F.M.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85(410), 398–409 (1990)

    MathSciNet  MATH  Google Scholar 

  27. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis, 3rd edn. Texts in Statistical Science Series. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  28. Gelman, A., Roberts, G.O., Gilks, W.R.: Efficient Metropolis jumping rules. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics, vol. 5, pp. 599–607. Oxford University Press, Oxford (1996)

    Google Scholar 

  29. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    MATH  Google Scholar 

  30. Ghosal, S., van der Vaart, A.: Fundamentals of nonparametric Bayesian inference. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 44. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  31. Godsill, S.J., Cemgil, A.T., Févotte, C., Wolfe, P.J.: Bayesian computational methods for sparse audio and music processing. In: 15th European Signal Processing Conference (EURASIP), pp. 345–349. IEEE, Poznan (2007)

    Google Scholar 

  32. Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Green, P.J.: Trans-dimensional Markov chain Monte Carlo. In: Highly Structured Stochastic Systems, Oxford Statistical Science Series, vol. 27, pp. 179–206. Oxford University Press, Oxford (2003). With part A by Simon J. Godsill and part B by Juha Heikkinen

    Google Scholar 

  34. Gugushvili, S., Spreij, P.: Consistent non-parametric Bayesian estimation for a time-inhomogeneous Brownian motion. ESAIM Probab. Stat. 18, 332–341 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Gugushvili, S., Spreij, P.: Nonparametric Bayesian drift estimation for multidimensional stochastic differential equations. Lith. Math. J. 54(2), 127–141 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Gugushvili, S., Spreij, P.: Posterior contraction rate for non-parametric Bayesian estimation of the dispersion coefficient of a stochastic differential equation. ESAIM Probab. Stat. 20, 143–153 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Gugushvili, S., van der Meulen, F., Schauer, M., Spreij, P.: Nonparametric Bayesian estimation of a Hölder continuous diffusion coefficient (2017). Preprint. arXiv:1706.07449v4

    Google Scholar 

  38. Gugushvili, S., van der Meulen, F., Schauer, M., Spreij, P.: Nonparametric Bayesian volatility learning under microstructure noise (2018). arXiv:1805.05606v1

    Google Scholar 

  39. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    MathSciNet  MATH  Google Scholar 

  40. Hindriks, R.: Empirical dynamics of neuronal rhythms: data-driven modeling of spontaneous magnetoencephalographic and local field potential recordings. PhD. Thesis, Vrije Universiteit Amsterdam (2011)

    Google Scholar 

  41. Hsu, D.A.: Tests for variance shift at an unknown time point. J. R. Stat. Soc.: Ser. C: Appl. Stat. 26(3), 279–284 (1977)

    Google Scholar 

  42. Hsu, D.A.: Detecting shifts of parameter in gamma sequences with applications to stock price and air traffic flow analysis. J. Am. Stat. Assoc. 74(365), 31–40 (1979)

    Google Scholar 

  43. Iacus, S.M.: Simulation and inference for stochastic differential equations. Springer Series in Statistics. Springer, New York (2008). With R examples

    Google Scholar 

  44. Iacus, S.M.: SDE: simulation and inference for Stochastic differential equations (2016). https://CRAN.R-project.org/package=sde. R package version 2.0.15

  45. Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic volatility models. J. Bus. Econ. Stat. 12(4), 371–389 (1994)

    MATH  Google Scholar 

  46. Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J. Econom. 122(1), 185–212 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  48. Küchler, U., Neumann, K., Sørensen, M., Streller, A.: Stock returns and hyperbolic distributions. Math. Comput. Model. 29(10), 1–15 (1999)

    MATH  Google Scholar 

  49. Martin, R., Ouyang, C., Domagni, F.: ‘Purposely misspecified’ posterior inference on the volatility of a jump diffusion process. Statist. Probab. Lett. 134(Supplement C), 106–113 (2018)

    Google Scholar 

  50. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Google Scholar 

  51. Müller, P., Mitra, R.: Bayesian nonparametric inference—why and how. Bayesian Anal. 8(2), 269–302 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Musiela, M., Rutkowski, M.: Martingale methods in financial modelling. Stochastic Modelling and Applied Probability, vol. 36, 2nd edn. Springer, Berlin (2005)

    Google Scholar 

  53. Mykland, P.A.: A Gaussian calculus for inference from high frequency data. Ann. Finance 8(2–3), 235–258 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Nickl, R., Söhl, J.: Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions. Ann. Stat. 45(4), 1664–1693 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Papaspiliopoulos, O., Pokern, Y., Roberts, G.O., Stuart, A.M.: Nonparametric estimation of diffusions: a differential equations approach. Biometrika 99(3), 511–531 (2012)

    MathSciNet  MATH  Google Scholar 

  56. Petrone, S., Rousseau, J., Scricciolo, C.: Bayes and empirical Bayes: do they merge? Biometrika 101(2), 285–302 (2014)

    MathSciNet  MATH  Google Scholar 

  57. Pokern, Y., Stuart, A.M., van Zanten, J.H.: Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs. Stoch. Process. Appl. 123(2), 603–628 (2013)

    MathSciNet  MATH  Google Scholar 

  58. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2017)

    Google Scholar 

  59. Robbins, H.: An empirical Bayes approach to statistics. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. I, pp. 157–163. University of California Press, Berkeley (1956)

    Google Scholar 

  60. Robbins, H.: The empirical Bayes approach to statistical decision problems. Ann. Math. Stat. 35, 1–20 (1964)

    MathSciNet  MATH  Google Scholar 

  61. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer Texts in Statistics. Springer, New York (2004)

    Google Scholar 

  62. Roberts, G.O., Stramer, O.: On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm. Biometrika 88(3), 603–621 (2001)

    MathSciNet  MATH  Google Scholar 

  63. Ruttor, A., Batz, P., Opper, M.: Approximate Gaussian process inference for the drift function in stochastic differential equations. In: Burges, C.J.C. Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Proceedings of the 26th International Conference on Neural Information Processing Systems, pp. 2040–2048. Curran Associates, New York (2013)

    Google Scholar 

  64. Sherlock, C., Fearnhead, P., Roberts, G.O.: The random walk Metropolis: linking theory and practice through a case study. Stat. Sci. 25(2), 172–190 (2010)

    MathSciNet  MATH  Google Scholar 

  65. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London (1986)

    Google Scholar 

  66. Soulier, P.: Nonparametric estimation of the diffusion coefficient of a diffusion process. Stoch. Anal. Appl. 16(1), 185–200 (1998)

    MathSciNet  MATH  Google Scholar 

  67. Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82(398), 528–550 (1987). With discussion and with a reply by the authors

    Google Scholar 

  68. Tierney, L.: Markov chains for exploring posterior distributions. Ann. Stat. 22(4), 1701–1762 (1994). With discussion and a rejoinder by the author

    Google Scholar 

  69. van der Meulen, F., Schauer, M.: Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals. Electron. J. Stat. 11(1), 2358–2396 (2017)

    MathSciNet  MATH  Google Scholar 

  70. van der Meulen, F., van Zanten, H.: Consistent nonparametric Bayesian inference for discretely observed scalar diffusions. Bernoulli 19(1), 44–63 (2013)

    MathSciNet  MATH  Google Scholar 

  71. van der Meulen, F., Schauer, M., van Zanten, H.: Reversible jump MCMC for nonparametric drift estimation for diffusion processes. Comput. Stat. Data Anal. 71, 615–632 (2014)

    MathSciNet  MATH  Google Scholar 

  72. van Zanten, H.: Nonparametric Bayesian methods for one-dimensional diffusion models. Math. Biosci. 243(2), 215–222 (2013)

    MathSciNet  MATH  Google Scholar 

  73. Virtanen, T., Cemgil, A.T., Godsill, S.: Bayesian extensions to non-negative matrix factorisation for audio signal modelling. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1825–1828. IEEE, Las Vegas (2008)

    Google Scholar 

  74. Wasserman, L.: All of Nonparametric Statistics. Springer Texts in Statistics. Springer, New York (2006)

    Google Scholar 

  75. Wilkinson, D.J.: Metropolis Hastings MCMC when the proposal and target have differing support. https://darrenjw.wordpress.com/2012/06/04/metropolis-hastings-mcmc-when-the-proposal-and-target-have-differing-support/ (2012). Accessed 23 December 2017

  76. Wong, E., Hajek, B.: Stochastic processes in engineering systems. Springer Texts in Electrical Engineering. Springer, New York (1985)

    Google Scholar 

  77. Yang, T.Y., Kuo, L.: Bayesian binary segmentation procedure for a Poisson process with multiple changepoints. J. Comput. Graph. Stat. 10(4), 772–785 (2001)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research leading to the results in this paper has received funding from the European Research Council under ERC Grant Agreement 320637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Spreij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gugushvili, S., der Meulen, F.v., Schauer, M., Spreij, P. (2019). Nonparametric Bayesian Volatility Estimation. In: de Gier, J., Praeger, C., Tao, T. (eds) 2017 MATRIX Annals. MATRIX Book Series, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-04161-8_19

Download citation

Publish with us

Policies and ethics