Advertisement

A Curious Mapping Between Supersymmetric Quantum Chains

  • Gyorgy Z. Feher
  • Alexandr GarbaliEmail author
  • Jan de Gier
  • Kareljan Schoutens
Chapter
Part of the MATRIX Book Series book series (MXBS, volume 2)

Abstract

We present a unitary transformation relating two apparently different supersymmetric lattice models in one dimension. The first (Fendley and Schoutens, J Stat Mech, P02017, 2007) describes semionic particles on a 1D ladder, with supersymmetry moving particles between the two legs. The second (de Gier et al., J Stat Mech, 023104, 2016) is a fermionic model with particle-hole symmetry and with supersymmetry creating or annihilating pairs of domain walls. The mapping we display features non-trivial phase factors that generalise the sign factors occurring in the Jordan-Wigner transformation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the hospitality of the international mathematical research institute MATRIX where a large part of this work was performed. JdG and AG gratefully thank financial support of the ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS). GZF was supported by the BME-Nanotechnology FIKP grant of EMMI (BME FIKP-NAT) and by the National Research Development and Innovation Office (NKFIH) (KH-17 grant no. 125567).

References

  1. 1.
    Fendley, P., Schoutens, K., de Boer, J.: Lattice models with \(\mathscr {N}=2\) supersymmetry. Phys. Rev. Lett. 90, 120402 (2003). arXiv/hep-th/0210161
  2. 2.
    Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys. B 202, 253–316 (1982)Google Scholar
  3. 3.
    Fendley, P., Schoutens, K.: Exact results for strongly-correlated fermions in 2+1 dimensions. Phys. Rev. Lett. 95, 046403 (2005). arXiv/cond-mat/0504595
  4. 4.
    van Eerten, H.: Extensive ground state entropy in supersymmetric lattice models. J. Math. Phys. 46, 123302 (2005). arXiv/cond-mat/0509581
  5. 5.
    Huijse, L., Schoutens, K.: Supersymmetry, lattice fermions, independence complexes and cohomology theory. Adv. Theor. Math. Phys. 14, 643–694 (2010). arXiv/0903.0784
  6. 6.
    Fendley, P., Nienhuis, B., Schoutens, K.: Lattice fermion models with supersymmetry. J. Phys. A. 36, 12399–12424 (2003). arXiv/cond-mat/0307338
  7. 7.
    Fokkema, T., Schoutens, K.: Mk models: the field theory connection. SciPost Phys. 3, 004 (2017). arXiv/1703.10079
  8. 8.
    de Gier, J., Feher, G., Nienhuis, B., Rusaczonek, M.: Integrable supersymmetric chain without particle conservation. J. Stat. Mech. 023104 (2016). arXiv/math-ph/1510.02520
  9. 9.
    Fendley, P., Schoutens, K.: Cooper pairs and exclusion statistics from coupled free-fermion chains. J. Stat. Mech. P02017 (2007). arXiv/cond-mat/0612270

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gyorgy Z. Feher
    • 1
  • Alexandr Garbali
    • 2
    Email author
  • Jan de Gier
    • 3
  • Kareljan Schoutens
    • 4
  1. 1.BME “Momentum” Statistical Field Theory Research GroupBudapestHungary
  2. 2.Australian Research Council Centre of Excellence (ACEMS), School of Mathematics and StatisticsThe University of MelbourneVICAustralia
  3. 3.Australian Research Council Centre of Excellence (ACEMS)The University of MelbourneVICAustralia
  4. 4.Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations