Safe-Steering of Batch Processes

  • Prashant MhaskarEmail author
  • Abhinav Garg
  • Brandon Corbett
Part of the Advances in Industrial Control book series (AIC)


This Chapter considers the problem of controlling batch processes to achieve a desired final product quality subject to input constraints and faults in the control actuators. Specifically, faults are considered that cannot be handled via robust control approaches, and preclude the ability to reach the desired end-point, necessitating fault-rectification. A safe-steering framework is developed to address the problem of determining how to utilize the functioning inputs during fault rectification in order to ensure that after fault-rectification, the desired product properties can be reached upon batch termination. To this end, first a novel reverse-time reachability region (we define the reverse-time reachability region as the set of states from where the desired end-point can be reached by batch termination) based MPC is formulated that reduces online computations, as well as provides a useful tool for handling faults. Next, a safe-steering framework is developed that utilizes the reverse-time reachability region based MPC in steering the state trajectory during fault rectification to enable (upon fault recovery) the achieving of the desired end-point properties by batch termination. The proposed controller and safe-steering framework are illustrated using a fed-batch process example.


  1. 1.
    Mhaskar, P., Aumi, S.: Transition from batch to continuous operation in bio-reactors: a model predictive control approach and application. Can. J. Chem. Eng. 45, 416–423 (2007)Google Scholar
  2. 2.
    Cruickshank, S.M., Daugulis, A.J., McLellan, P.J.: Dynamic modeling and optimal fed-batch feeding strategies for a two-phase partitioning bioreactor. Biotech. Bioeng. 67, 224–233 (2000)CrossRefGoogle Scholar
  3. 3.
    Zhang, G.P., Rohani, S.: On-line optimal control of a seeded batch cooling crystallizer. Chem. Eng. Sci. 58, 1887–1896 (2003)CrossRefGoogle Scholar
  4. 4.
    Soroush, M., Kravaris, C.: Optimal-design and operation of batch reactors. 1. Theoretical framework. Ind. Eng. Chem. Res. 32, 866–881 (1993)CrossRefGoogle Scholar
  5. 5.
    Soroush, M., Kravaris, C.: Optimal-design and operation of batch reactors. 2. A case-study. Ind. Eng. Chem. Res. 32, 882–893 (1993)CrossRefGoogle Scholar
  6. 6.
    Yabuki, Y., Nagasawa, T., MacGregor, J.F.: An industrial experience with product quality control in semi-batch processes. Comput. Chem. Eng. 24, 585–590 (2000)CrossRefGoogle Scholar
  7. 7.
    Hua, X.M., Rohani, S., Jutan, A.: Cascade closed-loop optimization and control of batch reactors. Chem. Eng. Sci. 59, 5695–5708 (2004)CrossRefGoogle Scholar
  8. 8.
    Shi, D., Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Predictive control of crystal size distribution in protein crystallization. Nanotechnology 16, S562–S574 (2005)CrossRefGoogle Scholar
  9. 9.
    Shi, D., El-Farra, N.H., Li, M., Mhaskar, P., Christofides, P.D.: Predictive control of particle size distribution in particulate processes. Chem. Eng. Sci. 61, 268–281 (2005)CrossRefGoogle Scholar
  10. 10.
    Sheikhzadeh, M., Trifkovic, M., Rohani, S.: Real-time optimal control of an anti-solvent isothermal semi-batch crystallization process. Chem. Eng. Sci. 63, 829–839 (2008)CrossRefGoogle Scholar
  11. 11.
    Palanki, S., Vemuri, J.: Optimal operation of semi-batch processes with a single reaction. Int. J. Chem. React. Eng. 3, 1219 (2005)Google Scholar
  12. 12.
    Pistikopoulos, E.N., Dua, V., Bozinis, N.A., Bemporad, A., Morari, M.: On-line optimization via off-line parametric optimization tools. Comput. Chem. Eng. 26, 175–185 (2002)CrossRefGoogle Scholar
  13. 13.
    Huynh, N., Kazantzis, N.: Parametric optimization of digitally controlled nonlinear reactor dynamics using Zubov-like functional equations. J. Math. Chem. 38, 499–519 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mhaskar, P.: Robust model predictive control design for fault-tolerant control of process systems. Ind. Eng. Chem. Res. 45, 8565–8574 (2006)CrossRefGoogle Scholar
  15. 15.
    Wang, Z.D., Huang, B., Unbehauen, H.: Robust reliable control for a class of uncertain nonlinear state-delayed systems. Automatica 35, 955–963 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cheng, L.L., Kwok, K.E., Huang, B.: Closed-loop fault detection using the local approach. Can. J. Chem. Eng. 81, 1101–1108 (2003)CrossRefGoogle Scholar
  17. 17.
    Mehranbod, N., Soroush, M., Panjapornpon, C.: A method of sensor fault detection and identification. J. Process Control 15, 321–339 (2005)CrossRefGoogle Scholar
  18. 18.
    Mhaskar, P., Gani, A., El-Farra, N.H., McFall, C., Christofides, P.D., Davis, J.F.: Integrated fault-detection and fault-tolerant control for process systems. AIChE J. 52, 2129–2148 (2006)CrossRefGoogle Scholar
  19. 19.
    El-Farra, N.H.: Integrated fault detection and fault-tolerant control architectures for distributed processes. Ind. Eng. Chem. Res. 45, 8338–8351 (2006)CrossRefGoogle Scholar
  20. 20.
    Mhaskar, P., McFall, C., Gani, A., Christofides, P.D., Davis, J.F.: Isolation and handling of actuator faults in nonlinear systems. Automatica 44, 53–62 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    El-Farra, N.H., Giridhar, A.: Detection and management of actuator faults in controlled particulate processes using population balance models. Chem. Eng. Sci. 63, 1185–1204 (2008)CrossRefGoogle Scholar
  22. 22.
    Armaou, A., Demetriou, M.A.: Robust detection and accommodation of incipient component and actuator faults in nonlinear distributed processes. AIChE J. 54, 2651–2662 (2008)CrossRefGoogle Scholar
  23. 23.
    Gandhi, R., Mhaskar, P.: Safe-parking of nonlinear process systems. Comput. Chem. Eng. 32, 2113–2122 (2008)CrossRefGoogle Scholar
  24. 24.
    Mahmood, M., Gandhi, R., Mhaskar, P.: Safe-parking of nonlinear process systems: handling uncertainty and unavailability of measurements. Chem. Eng. Sci. 63, 5434–5446 (2008)CrossRefGoogle Scholar
  25. 25.
    Alamir, M., Balloul, I.: Robust constrained control algorithm for general batch processes. Int. J. Control 72, 1271–1287 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Terwiesch, P., Agarwal, M., Rippin, D.W.T.: Batch unit optimization with imperfect modelling: a survey. J. Process Control 4, 238–258 (1994)CrossRefGoogle Scholar
  27. 27.
    Undey, C., Ertunc, S., Cinar, A.: Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis. Ind. Eng. Chem. Res. 42, 4645–4658 (2003)CrossRefGoogle Scholar
  28. 28.
    Undey, C., Tatara, E., Cinar, A.: Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations. J. Biotech. 108, 61–77 (2004)CrossRefGoogle Scholar
  29. 29.
    Kapoor, N., Daoutidis, P.: Stabilization of nonlinear processes with input constraints. Comput. Chem. Eng. 24, 9–21 (2000)CrossRefGoogle Scholar
  30. 30.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  31. 31.
    Katz, S., Tal, A., Basri, R.: Direct visibility of point sets. ACM Trans. Graph. 26, 1–11 (2007)CrossRefGoogle Scholar
  32. 32.
    Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Predictive control of switched nonlinear systems with scheduled mode transitions. IEEE Trans. Autom. Control 50, 1670–1680 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control. Syst. Control Lett. 55, 650–659 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Prashant Mhaskar
    • 1
    Email author
  • Abhinav Garg
    • 1
  • Brandon Corbett
    • 1
  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations