Advertisement

Handling Multi-rate and Missing Data in Variable Duration Economic Model Predictive Control of Batch Processes with Application to Electric Arc Furnace Operation

  • Prashant MhaskarEmail author
  • Abhinav Garg
  • Brandon Corbett
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

In this Chapter, the problem of variable duration economic model predictive control (EMPC) of batch processes subject to multi-rate and missing data is considered. To this end, a recently developed subspace-based model identification approach for batch processes is generalized to handle multi-rate and missing data by utilizing the incremental singular value decomposition technique. Exploiting the fact that the proposed identification approach is capable of handling inconsistent batch lengths, the resulting dynamic model is integrated into a tiered EMPC formulation that optimizes process economics (including batch duration). Simulation case studies involving application to the energy intensive electric arc furnace process demonstrate the efficacy of the proposed approach compared to a traditional trajectory tracking approach subject to limited availability of process measurements, missing data, measurement noise and constraints.

References

  1. 1.
    Moonen, M., DeMoor, B., Vandenberghe, L., Vandewalle, J.: On- and off-line identification of linear state-space models. Int. J. Control 49, 219–232 (1989)MathSciNetCrossRefGoogle Scholar
  2. 2.
    VanOverschee, P., DeMoor, B.: Subspace Identification for Linear Systems: Theory, Implementation, Applications. Kluwer Academic Publishers, USA (1996)Google Scholar
  3. 3.
    Jansson, M., Wahlberg, B.: On consistency of subspace methods for system identification. Automatica. 34, 1507–1519 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ljung, L.: System Identification: Theory for the User. Prentice-Hall, Inc., New Jersey (1999)zbMATHGoogle Scholar
  5. 5.
    Qin, S.J.: An overview of subspace identification. Comput. Chem. Eng. 30, 1502–1513 (2006)CrossRefGoogle Scholar
  6. 6.
    Liu, Z., Hansson, A., Vandenberghe, L.: Nuclear norm system identification with missing inputs and outputs. Syst. Control Lett. 62, 605–612 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liu, Z., Vandenberghe, L.: Interior-point method for nuclear norm approximation with application to system identification. SIAM J. Math. Anal. Appl. 31, 1235–1256 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gibson, S., Ninness, B.: Robust maximum-likelihood estimation of multivariable dynamic systems. Automatica 41, 1667–1682 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Flores-Cerrillo, J., MacGregor, J.F.: Latent variable MPC for trajectory tracking in batch processes. J. Process Control 15, 651–663 (2005)CrossRefGoogle Scholar
  10. 10.
    Golshan, M., MacGregor, J.F., Bruwer, M.J., Mhaskar, P.: Latent variable model predictive control (LV-MPC) for trajectory tracking in batch processes. J. Process Control 20, 538–550 (2010)CrossRefGoogle Scholar
  11. 11.
    Srinivasan, B., Bonvin, D.: Real-time optimization of batch processes by tracking the necessary conditions of optimality. Ind. Eng. Chem. Res. 46, 492–504 (2007)CrossRefGoogle Scholar
  12. 12.
    Bonvin, D., Srinivasan, B.: On the role of the necessary conditions of optimality in structuring dynamic real-time optimization schemes. Comput. Chem. Eng. 51, 172–180 (2013)CrossRefGoogle Scholar
  13. 13.
    Aumi, S., Mhaskar, P.: Safe-steering of batch process systems. AIChE J. 55, 2861–2872 (2009)CrossRefGoogle Scholar
  14. 14.
    Aumi, S., Mhaskar, P.: Robust model predictive control and fault handling of batch processes. AIChE J. 57, 1796–1808 (2011)CrossRefGoogle Scholar
  15. 15.
    MacRosty, R.D.M., Swartz, C.L.E.: Dynamic modeling of an industrial electric arc furnace. Ind. Eng. Chem. Res. 44, 8067–8083 (2005)CrossRefGoogle Scholar
  16. 16.
    Srinivasan, B., Palanki, S., Bonvin, D.: Dynamic optimization of batch processes: I. characterization of the nominal solution. Comput. Chem. Eng. 27, 1–26 (2003)CrossRefGoogle Scholar
  17. 17.
    Srinivasan, B., Bonvin, D., Visser, E., Palanki, S.: Dynamic optimization of batch processes: II. role of measurements in handling uncertainty. Comput. Chem. Eng. 27, 27–44 (2003)CrossRefGoogle Scholar
  18. 18.
    Rashid, M.M., Mhaskar, P., Swartz, C.L.E.: Multi-rate modeling and economic model predictive control of the electric arc furnace. J. Process Control 40, 50–61 (2016)CrossRefGoogle Scholar
  19. 19.
    VanOverschee, P., DeMoor, B.: A unifying theorem for three subspace system identification algorithms. Automatica 31, 1853–1864 (1995)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Raghavan, H., Tangirala, A.K., Gopaluni, R.B., Shah, S.L.: Identification of chemical processes with irregular output sampling. Control Eng. Practice 14, 467–480 (2006)CrossRefGoogle Scholar
  21. 21.
    Gopaluni, R.B.: Nonlinear system identification under missing observations: the case of unknown model structure. J. Process Control 20, 314–324 (2010)CrossRefGoogle Scholar
  22. 22.
    Balzano, L., On, Wright S.J.: On GROUSE and incremental SVD. In: IEEE 5th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1–4 (2013)Google Scholar
  23. 23.
    Balzano, L., Wright, S.J.: Local convergence of an algorithm for subspace identification from partial data. Found. Comput. Math. 15, 1279–1314 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Heidarinejad, M., Liu, J., Christofides, P.D.: Economic model predictive control of nonlinear process systems using Lyapunov techniques. AIChE J. 58, 855–870 (2012)CrossRefGoogle Scholar
  25. 25.
    Amrit, R., Rawlings, J.B., Biegler, L.T.: Optimizing process economics online using model predictive control. Comput. Chem. Eng. 58, 334–343 (2013)CrossRefGoogle Scholar
  26. 26.
    Diehl, M., Amrit, R., Rawlings, J.B.: A Lyapunov function for economic optimizing model predictive control. IEEE Trans. Autom. Control 56, 703–707 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ellis, M., Durand, H., Christofides, P.D.: A tutorial review of economic model predictive control methods. J. Process Control 24, 1156–1178 (2014)CrossRefGoogle Scholar
  28. 28.
    Ellis, M., Christofides, P.D.: On finite-time and infinite-time cost improvement of economic model predictive control for nonlinear systems. Automatica 50, 2561–2569 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chachuat, B., Marchetti, A., Bonvin, D.: Process optimization via constraints adaptation. J. Process Control 18, 244–257 (2008)CrossRefGoogle Scholar
  30. 30.
    Chachuat, B., Srinivasan, B., Bonvin, D.: Adaptation strategies for real-time optimization. Comput. Chem. Eng. 33, 1557–1567 (2009)CrossRefGoogle Scholar
  31. 31.
    Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38, 3–20 (2002)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yang, X., Biegler, L.T.: Advanced-multi-step nonlinear model predictive control. J. Process Control 23, 1116–1128 (2013)CrossRefGoogle Scholar
  33. 33.
    Jäschke, J., Yang, X., Biegler, L.T.: Fast economic model predictive control based on NLP-sensitivities. J. Process Control 24, 1260–1272 (2014)CrossRefGoogle Scholar
  34. 34.
    Diehl, M., Bock, H.G., Schlöder, J.P.: A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM J. Control Optim. 43, 1714–1736 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Bekker, J.G., Craig, I.K., Pistorius, P.C.: Modelling and simulation of an electric arc furnace process. ISIJ Int. 39, 23–32 (1999)CrossRefGoogle Scholar
  36. 36.
    Kozub, D.J., MacGregor, J.F.: State estimation for semi-batch polymerization reactors. Chem. Eng. Sci. 47, 1047–1062 (1992)CrossRefGoogle Scholar
  37. 37.
    Washington, I.D., Swartz, C.L.E.: Design under uncertainty using parallel multiperiod dynamic optimization. AIChE J. 60, 3151–3168 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Prashant Mhaskar
    • 1
    Email author
  • Abhinav Garg
    • 1
  • Brandon Corbett
    • 1
  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations