Skip to main content

A Hybrid Approach for Image Segmentation in the IoT Era

  • Chapter
  • First Online:
Artificial Intelligence in IoT

Abstract

Spectral clustering is a class of graph theoretic procedure, which is popular for finding natural groupings. Over the last decade, it has become a widely adopted tool – utilized in solving image segmentation problems, via normalized cut (NCut) methodology. Few challenges faced by image segmentation based on spectral clustering include its inability of processing large images due to high computational cost and memory requirements and its sensitivity to irrelevant and noisy data. This chapter presents an unsupervised image segmentation technique using spectral clustering, aimed at salient object detection, followed by extraction. The presented technique addresses all of the aforementioned challenges by means of a weighted binary tree-based fast spectral clustering (WBTFSC). The algorithm integrates dimensionality reduction with spectral clustering by introducing an effective preprocessor, comprising two fundamental steps of color quantization and unique pixels selection. The experiments, performed on color images using the proposed algorithm, show improved performance in extracting objects of interest with high accuracy. We also test the algorithm on several noisy images; the obtained results reveal better performance in comparison to few existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm

  2. 2.

    www.elib.cs.berkeley.edu/segmentation

References

  1. Al-Turjman, F. (2018). QoS–aware data delivery framework for safety-inspired multimedia in integrated vehicular-IoT. Elsevier Computer Communications Journal, 121, 33–43.

    Article  Google Scholar 

  2. Al-Turjman, F., & Alturjman, S. (2018). 5G/IoT-enabled UAVs for multimedia delivery in industry-oriented applications. Multimedia Tools and Applications, Springer. https://doi.org/10.1007/s11042-018-6288-7.

  3. Alabady, S., & Al-Turjman, F. (2018). A novel approach for error detection and correction for efficient energy in wireless networks. Springer Multimedia Tools and Applications. https://doi.org/10.1007/s11042-018-6282-0.

    Article  Google Scholar 

  4. Hasan, M. Z., & Al-Turjman, F. (2018). Analysis of cross-layer design of quality-of-service forward geographic wireless sensor network routing strategies in green internet of things. IEEE Access Journal, 6(1), 20371–20389.

    Article  Google Scholar 

  5. Al-Turjman, F., & Alturjman, S. (2018). Confidential smart-sensing framework in the IoT era. The Springer Journal of Supercomputing. https://doi.org/10.1007/s11227-018-2524-1.

    Article  Google Scholar 

  6. TongKe, F. (2013). Smart agriculture based on cloud computing and IOT. Journal of Convergence Information Technology., 8(2), 210–216.

    Article  Google Scholar 

  7. Bhatt, C., Dey, N., & Ashour, A. S. (Eds.). (2017). Internet of things and big data technologies for next generation healthcare (pp. 978–973). Cham: Springer.

    Google Scholar 

  8. Han Zou, Yuxun Zhou, Jianfei Yang, Costas J. Spanos, “Device-free occupancy detection and crowd counting in smart buildings with WiFi-enabled IoT”, Energy and Buildings, V(174), 309–322, 2018.

    Google Scholar 

  9. Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis and algorithm [C]. NIPS.

    Google Scholar 

  10. Hartmann, S. L., & Galloway, R. L. (2000). Depth-buffer targeting for spatially accurate 3-D visualization [J], medical images. IEEE Transactions on Medical Imaging, 19(10), 1024–1031.

    Article  Google Scholar 

  11. Lei, T., & Sewchand, W. (2001). Object detection and recognition via stochastic model-based image segmentation [C]. IEEE Multidimensional Signal Processing Workshop, 2001, Sixth, pp. 17–18.

    Google Scholar 

  12. Yixin Chen, J. (2002). A region based fuzzy feature matching a roach to content-based image retrieval [J]. IEEE Transactions on Fuzzy Systems, 24(9), 1252–1267.

    Google Scholar 

  13. Liu, Z., Shen, L., & Zhang, Z. (2011). Unsupervised image segmentation based on analysis of binary partition tree for salient object extraction [J]. Signal Processing, 91(2), 290–299.

    Article  MATH  Google Scholar 

  14. Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004). Spectral grouping using the Nystrom method [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 26(2), 214–225.

    Article  Google Scholar 

  15. Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.

    Article  Google Scholar 

  16. Mohanta, P. P., Mukherjee, D. P., & ST, A. (2002). Agglomerative clustering for image segmentation [C]. IEEE International Conference on Pattern Recognition, 1, 664–667.

    Article  Google Scholar 

  17. Zhao, P., & Zhang, C. Q. (2011). A new clustering method and its a lication in social networks [J]. Pattern Recognition Letters, 32(15), 2109–2118.

    Article  Google Scholar 

  18. Hendrickson, B., & Leland, R.(1995). A multilevel algorithm for partitioning graphs [C]. IEEE Conference on SuperComputing.

    Google Scholar 

  19. Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 79, 57–70.

    MathSciNet  MATH  Google Scholar 

  20. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  21. Yan, D., Huang, L., & Jordan, M. (2009). Fast a roximate spectral clustering [R]: Technical report UCB/EECS]-2009-45.

    Google Scholar 

  22. Ducournau, A., Bretto, A., Rital, S., & Laget, B. (2012). A reductive a roach to hypergraph clustering: An a lication to image segmentation [J]. Pattern Recognition, 45(7), 2788–2803.

    Article  MATH  Google Scholar 

  23. Tung, F., Wong, A., & Clausi, D. A. (2010). Enabling scalable spectral clustering for image segmentation [J]. Pattern Recognition, 23, 4069–4076.

    Article  MATH  Google Scholar 

  24. Gao, H., Mei, J., & Si, Y. (2013). A curve evolution a roach for unsupervised segmentation of images with low depth of field [J]. IEEE Transaction in Image Processing, 22(10), 4086–4095.

    Article  MATH  Google Scholar 

  25. Harel, J., Koch, C., & Perona, P. (2006). Graph-based visual saliency [J]. Advances in Neural Information Processing Systems, 19, 545–552.

    Google Scholar 

  26. Tasdemir, K. (2010). Vector quantization based on proximate spectral clustering of large datasets [J]. Pattern Recognition, 45(8), 3034–3044.

    Article  Google Scholar 

  27. Zhang, K., Tsang I. W., & Kwok, J. T. (2008) Improved Nystrom low-rank a roximation and error analysis [C]. International Conference on Machine Learning. ICML (pp. 1232–1239).

    Google Scholar 

  28. Goferman, S., Zelnik-Manor, L., & Tal, A. (2010). Context-aware saliency detection [C]. In Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., 2010, pp. 2376–2383.

    Google Scholar 

  29. Cheng, M. M., Zhang, G. X., Mitra, N. J., & Huang, X. (2011). Global contrast based salient region detection [C]. In IEEE Conference on Computer Vision and Pattern Recognition, June 20, 2011.

    Google Scholar 

  30. Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001) On spectral clustering: Ananlysis and an algorithm [J]. Advance in Neural Information Processing Systems, 849–856.

    Google Scholar 

  31. L.Z. Manor, & P. Perona. (2004). Self tuning spectral clustering [J]. Advance in Neural Information Processing Systems (pp. 1601–1608).

    Google Scholar 

  32. Luxburg, U. (2007). A tutorial on spectral clustering [J]. Journal of Statistics and Computing, 17(4), 395–416.

    Article  MathSciNet  Google Scholar 

  33. Ge, F., Wang, S., & Liu, T. (2007). New benchmark for image segmentation evaluation [J]. Journal of Electronic Imaging, 16(3), 033011.

    Article  Google Scholar 

  34. Clinton, N., Holt, A., & Gong, P. (2010). Accuracy assessment measures for object-based image segmentation goodness [J]. Photogrammetric Engineering & Remote Sensing, 76(3), 289–299.

    Article  Google Scholar 

  35. Duan, Q., Akram, T., Duan, P., & Wang, X. (2016). Visual saliency detection using information contents weighting. Optik-International Journal for Light and Electron Optics, Elsevier, 127(19), 7418–7430.

    Article  Google Scholar 

  36. Khan, Z. U., Akram, T., Naqvi, S. R., Haider, S. A., Kamran, M., & Muhammad, N. (2018). Automatic detection of plant diseases; utilizing an unsupervised cascaded design. (IBCAST), Islamabad, pp. 339–346, 3028.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tallha Akram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akram, T., Naqvi, S.R., Haider, S.A., Qadri, N.N. (2019). A Hybrid Approach for Image Segmentation in the IoT Era. In: Al-Turjman, F. (eds) Artificial Intelligence in IoT. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-04110-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04110-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04109-0

  • Online ISBN: 978-3-030-04110-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics