Skip to main content

Graph Minors from Simulated Annealing for Annealing Machines with Sparse Connectivity

  • Conference paper
  • First Online:
Book cover Theory and Practice of Natural Computing (TPNC 2018)

Abstract

The emergence of new annealing hardware in the last decade and its potential for efficiently solving NP hard problems in quadratically unconstrained binary optimization (QUBO) by emulating the ground state search of an Ising model are likely to become an important paradigm in natural computing. Driven by the need to parsimoniously exploit the limited hardware resources of present day and near-term annealers, we present a heuristic for constructing graph minors by means of simulated annealing. We demonstrate that our algorithm improves on state of the art hardware embeddings, allowing for the representation of certain QUBO problems with up to 50% more binary variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://hokudai-hitachi2017-2.contest.atcoder.jp/.

  2. 2.

    We create random graphs by growing a tree up to the desired number of vertices. To this end we add one vertex at a time and connect it to one of the existing vertices with equal probability. Subsequently, we add edges to the tree, by filling unoccupied edges with equal probability until the prescribed edge density is reached.

References

  1. Adler, I., et al.: Faster parameterized algorithms for minor containment. Theoret. Comput. Sci. 412(50), 7018–7028 (2011)

    Article  MathSciNet  Google Scholar 

  2. Cai, J., Macready, B., Roy, A.: A practical heuristic for finding graph minors, arxiv:1406.2741

  3. Choi, V.: Minor-embedding in adiabatic quantum computation: I. the parameter setting problem. Quant. Inf. Process. 7(5), 193–209 (2008)

    Google Scholar 

  4. Choi, V.: Minor-embedding in adiabatic quantum computation: II. minor-universal graph design. Quant. Inf. Process. 10(3), 343–353 (2011)

    Google Scholar 

  5. Farhi, E., et al.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)

    Article  MathSciNet  Google Scholar 

  6. Inagaki, T., et al.: A coherent Ising machine for 2000-node optimization problems. Science 354(6312), 603–606 (2016). https://doi.org/10.1126/science.aah4243

    Article  Google Scholar 

  7. Isakov, S., et al.: Optimised simulated annealing for Ising spin glasses. Comput. Phys. Commun. 192, 265–271 (2015)

    Article  MathSciNet  Google Scholar 

  8. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473, 194–198 (2011)

    Article  Google Scholar 

  9. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998)

    Article  Google Scholar 

  10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  11. Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: minor embedding with hard faults. Quant. Inf. Process. 13(3), 709–729 (2014)

    Article  MathSciNet  Google Scholar 

  12. Kochenberger, G., et al.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014)

    Article  MathSciNet  Google Scholar 

  13. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  14. McMahon, P.L., et al.: A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354(6312), 614–617 (2016)

    Article  MathSciNet  Google Scholar 

  15. Okuyama, T., et al.: Contractive graph-minor embedding for CMOS Ising computer. IEICE Tech. Rep. 116, 97–103 (2016)

    Google Scholar 

  16. Okuyama, T., Hayashi, M., Yamaoka, M.: An Ising computer based on simulated quantum annealing by path integral Monte Carlo method. In: 2017 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–6 (2017)

    Google Scholar 

  17. Shahriari, B., et al.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  18. Yamaoka, M., et al.: A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing. IEEE J. Solid-State Circ. 51(1), 303–309 (2016)

    Article  Google Scholar 

  19. Zhu, Z., Ochoa, A.J., Katzgraber, H.G.: Efficient cluster algorithm for spin glasses in any space dimension. Phys. Rev. Lett. 115, 077201 (2015)

    Article  Google Scholar 

  20. See publications in technology section on the homepage of D-Wave Systems Inc. Accessed 20 July 2018. https://www.dwavesys.com/

Download references

Acknowledgements

It is our pleasure to thank Hirofumi Suzuki, Kazuhiro Kurita, and Shoya Takahashi for supporting the organization of the “Hokkaido University & Hitachi 2nd New-Concept Computing Contest 2017.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normann Mertig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sugie, Y. et al. (2018). Graph Minors from Simulated Annealing for Annealing Machines with Sparse Connectivity. In: Fagan, D., Martín-Vide, C., O'Neill, M., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2018. Lecture Notes in Computer Science(), vol 11324. Springer, Cham. https://doi.org/10.1007/978-3-030-04070-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04070-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04069-7

  • Online ISBN: 978-3-030-04070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics