Skip to main content

DNA-Guided Assembly of Nanocellulose Meshes

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2018)

Abstract

Nanoengineered materials are a product of joint collaboration of theoreticians and experimentalists, of physicists, (bio-)chemists, and recently, of computer scientists. In the field of Nanotechnology and Nanoengineering, DNA (algorithmic) self-assembly has an acknowledged leading position. As a fabric, DNA is a rather inferior material; as a medium for shape, pattern, and dynamic behavior reconstruction, it is one of the most versatile nanomaterials. This is why the prospect of combining the physical properties of known high performance nanomaterials, such as cellulose, graphene, or fibroin, with the assembly functionality of DNA scaffolds is a very promising prospect. In this work we analyze the dynamical and structural properties of a would-be DNA-guided assembly of nanocellulose meshes. The aim is to generate pre-experimental insights on possible ways of manipulating structural properties of such meshes. The mechanistic principles of these systems, implemented through the DNA assembly apparatus, ensure the formation of 2D nanocellulose mesh structures. A key desired feature for such an engineered synthetic material, e.g. with applications in bio-medicine and nano-engineering, would be to control the size of the openings (gaps) within these meshes, a.k.a. its aperture. However, in the case of this composite material, this is not a direct engineered feature. Rather, we assert it could be indirectly achieved through varying several key parameters of the system. We consider here several experimentally tunable parameters, such as the ratio between nanocellulose fibrils and the DNA guiding elements, i.e., aptamer-functionalized DNA origamis, as well as the assumed length of the nanocellulose fibrils. To this aim, we propose a computational model of the mesh-assembly dynamical system, which we subject to numerical parameter scan and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, by assumption, the R objects intersect one-another at discretized locations, and that all R objects have the same discrete length l.

  2. 2.

    Note that according to our assumption, the \(\# R\) and \(\# O\) values are constant.

References

  1. Amărioarei, A., Barad, G., Czeizler, E., Czeizler, E., Dobre, A.M., Iţcuş, C., Păun, A., Păun, M., Trandafir, R., Tuşa, I.: One dimensional DNA tiles self assembly model simulation. Int. J. Unconventional Comput. 13(4/5), 399–415 (2018)

    Google Scholar 

  2. Benson, E., Mohammed, A., Gardell, J., Masich, S., Czeizler, E., Orponen, P., Högberg, B.: DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015)

    Article  Google Scholar 

  3. Boese, B.J., Breaker, R.R.: In vitro selection and characterization of cellulose-binding DNA aptamers. Nucleic Acids Res. 35(19), 6378–6388 (2007)

    Article  Google Scholar 

  4. Chen, W.T., Zhu, A.Y., Sanjeev, V., Khorasaninejad, M., Shi, Z., Lee, E., Capasso, F.: A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220–226 (2018)

    Article  Google Scholar 

  5. Ding, L., et al.: MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9(1), 155 (2018)

    Article  Google Scholar 

  6. Eskelinen, A.P., Kuzyk, A., Kaltiaisenaho, T.K., Timmermans, M.Y., Nasibulin, A.G., Kauppinen, E.I., Törmä, P.: Assembly of single-walled carbon nanotubes on DNA-origami templates through streptavidin-biotin interaction. Small 7(6), 746–750 (2011)

    Article  Google Scholar 

  7. Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Rule-based modeling of biochemical networks. Complexity 10(4), 22–41 (2005)

    Article  MathSciNet  Google Scholar 

  8. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical systems with BioNetGen. In: Methods in Molecular Biology, vol. 500, pp. 113–167. Humana Press (2009)

    Google Scholar 

  9. Jang, Y., Choi, W.T., Johnson, C.T., García, A.J., Singh, P.M., Breedveld, V., Hess, D.W., Champion, J.A.: Inhibition of bacterial adhesion on nanotextured stainless steel 316L by electrochemical etching. ACS Biomater. Sci. Eng. 4(1), 90–97 (2018)

    Article  Google Scholar 

  10. Kuzyk, A., Laitinen, K.T., Törmä, P.: DNA origami as a nanoscale template for protein assembly. Nanotechnology 20(23), 235305:1–235305:5 (2009)

    Article  Google Scholar 

  11. Kuzyk, A., Schreiber, R., Fan, Z., Pardatscher, G., Roller, E.M., Högele, A., Simmel, F.C., Govorov, A.O., Liedl, T.: DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483(7389), 311–314 (2012)

    Article  Google Scholar 

  12. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465(7295), 206–209 (2010)

    Article  Google Scholar 

  13. Maune, H.T., Han, S.P., Barish, R.D., Bockrath, M., Iii, W.A., Rothemund, P.W., Winfree, E.: Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 5(1), 61–66 (2010)

    Article  Google Scholar 

  14. Mohammed, A., Czeizler, E., Czeizler, E.: Computational modelling of the kinetic tile assembly model using a rule-based approach. Theor. Comput. Sci. 701, 203–215 (2017)

    Article  MathSciNet  Google Scholar 

  15. Park, J.H., Rutledge, G.C.: Ultrafine high performance polyethylene fibers. J. Mater. Sci. 53(4), 3049–3063 (2018)

    Article  Google Scholar 

  16. Picker, A., et al.: Mesocrystalline calcium silicate hydrate: a bioinspired route toward elastic concrete materials. Sci. Adv. 3(11), e1701216 (2017)

    Article  Google Scholar 

  17. Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  18. Smith, A.M.: Rulebender: integrated modeling, simulation and visualization for rule-based intracellular biochemistry. BMC J. Bioinf. 13, 1–39 (2012)

    Google Scholar 

  19. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat. Methods 8(2), 177–183 (2011)

    Article  Google Scholar 

  20. Snow, R.J., Bhatkar, H., Diaye, A.T.N., Arenholz, E., Idzerda, Y.U., Snow, R.J., Bhatkar, H., Diaye, A.T.N., Arenholz, E., Idzerda, Y.U.: Large moments in bcc \(Fe_{x }Co_{y}Mn_{z}\) ternary alloy thin films. Appl. Phys. Lett. 112(7), 1–5 (2018)

    Article  Google Scholar 

  21. Tikhomirov, G., Petersen, P., Qian, L.: Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552(7683), 67–71 (2017)

    Article  Google Scholar 

  22. Ware, C.S., Smith-Palmer, T., Peppou-Chapman, S., Scarratt, L.R., Humphries, E.M., Balzer, D., Neto, C.: Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces. ACS Appl. Mate. Interfaces 10(4), 4173–4182 (2018)

    Article  Google Scholar 

  23. Xiong, G., He, P., Lyu, Z., Chen, T., Huang, B., Chen, L., Fisher, T.S.: Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun. 9(1), 790 (2018)

    Article  Google Scholar 

  24. Yang, J., Hlavacek, W.S.: The efficiency of reactant site sampling in network-free simulation of rule-based models for biochemical systems. Phys. Biol. 8(5), 055009 (2011)

    Article  Google Scholar 

  25. Yang, Q., Goldstein, I.J., Mei, H.Y., Engelke, D.R.: DNA ligands that bind tightly and selectively to cellobiose. Proc. Nat. Acad. Sci. 95(10), 5462–5467 (1998)

    Article  Google Scholar 

  26. Zhang, K., Lin, S., Feng, Q., Dong, C., Yang, Y., Li, G., Bian, L.: Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration. Acta Biomaterialia 64, 389–400 (2017)

    Article  Google Scholar 

  27. Zhang, X., Ding, X., Zou, J., Gu, H.: A proximity-based programmable DNA nanoscale assembly line. Methods Mol. Biol. 1500, 257–268 (2017)

    Article  Google Scholar 

  28. Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C., Seeman, N.C.: From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461(7260), 74–77 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Finland through grant 311371/2017 and by the Romanian National Authority for Scientific Research and Innovation, through the POC grant P_37_257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Mitrana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amărioarei, A. et al. (2018). DNA-Guided Assembly of Nanocellulose Meshes. In: Fagan, D., Martín-Vide, C., O'Neill, M., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2018. Lecture Notes in Computer Science(), vol 11324. Springer, Cham. https://doi.org/10.1007/978-3-030-04070-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04070-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04069-7

  • Online ISBN: 978-3-030-04070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics