Skip to main content

Lift-Per-Drift: An Evaluation Metric for Classification Frameworks with Concept Drift Detection

  • Conference paper
  • First Online:
AI 2018: Advances in Artificial Intelligence (AI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11320))

Included in the following conference series:

  • 2318 Accesses

Abstract

Data streams with concept drift change over time. Detecting drift allows remedial action, but this can come at a cost e.g. training a new classifier. Prequential accuracy is commonly used to evaluate the impact of drift detection frameworks on data stream classification, but recent work shows frequent periodic drift detection can provide better accuracy than state-of-the-art drift detection techniques. We discuss how sequentiality, the degree of consecutive matching class labels across instances, allows high accuracy without a classifier learning to differentiate classes. We propose a novel metric: lift-per-drift (lpd). This measures drift detection performance through its impact on classification accuracy, penalised by drifts detected in a dataset. This metric solves three problems: lpd cannot be increased by periodic, frequent drifts; lpd clearly shows when using drift detection increases classifier error; and lpd does not require knowledge of where real drifts occurred. We show how lpd can be set to be sensitive to the cost of each drift. Our experiments show lpd is not artificially increased through sequentiality; that lpd highlights when drift detection has caused a loss in accuracy; and that it is sensitive to change in true-positive drift and false-positive drift detection rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bifet, A., de Francisci Morales, G., Read, J., Holmes, G., Pfahringer, B.: Efficient online evaluation of big data stream classifiers. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 59–68. ACM (2015)

    Google Scholar 

  2. Bifet, A.: Classifier concept drift detection and the illusion of progress. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 715–725. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_64

    Chapter  Google Scholar 

  3. Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept drift and imbalance: an overview. Prog. Artif. Intell. 1(1), 89–101 (2012)

    Article  Google Scholar 

  4. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning algorithms. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 329–338. ACM (2009)

    Google Scholar 

  5. Krempl, G., et al.: Open challenges for data stream mining research. ACM SIGKDD Explor. Newsl. 16(1), 1–10 (2014)

    Article  Google Scholar 

  6. Tsymbal, A.: The problem of concept drift: definitions and related work, vol. 106. Computer Science Department, Trinity College Dublin (2004)

    Google Scholar 

  7. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  8. Frías-Blanco, I., del Campo-Ávila, J., Ramos-Jiménez, G., Morales-Bueno, R., Ortiz-Díaz, A., Caballero-Mota, Y.: Online and non-parametric drift detection methods based on Hoeffdings bounds. IEEE TKDE 27(3), 810–823 (2015)

    Google Scholar 

  9. Žliobaitė, I., Budka, M., Stahl, F.: Towards cost-sensitive adaptation: when is it worth updating your predictive model? Neurocomputing 150, 240–249 (2015)

    Article  Google Scholar 

  10. Bifet, A., Frank, E.: Sentiment knowledge discovery in Twitter streaming data. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS (LNAI), vol. 6332, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16184-1_1

    Chapter  Google Scholar 

  11. Žliobaitė, I., Bifet, A., Read, J., Pfahringer, B., Holmes, G.: Evaluation methods and decision theory for classification of streaming data with temporal dependence. Mach. Learn. 98(3), 455–482 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anderson, R., Koh, Y.S., Dobbie, G. (2018). Lift-Per-Drift: An Evaluation Metric for Classification Frameworks with Concept Drift Detection. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03991-2_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03990-5

  • Online ISBN: 978-3-030-03991-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics