Skip to main content

A Multi-tree Genetic Programming Representation for Melanoma Detection Using Local and Global Features

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11320)

Abstract

Melanoma is the deadliest type of skin cancer that accounts for nearly 75% of deaths associated with it. However, survival rate is high, if diagnosed at an early stage. This study develops a novel classification approach to melanoma detection using a multi-tree genetic programming (GP) method. Existing approaches have employed various feature extraction methods to extract features from skin cancer images, where these different types of features are used individually for skin cancer image classification. However they remain unable to use all these features together in a meaningful way to achieve performance gains. In this work, Local Binary Pattern is used to extract local information from gray and color images. Moreover, to capture the global information, color variation among the lesion and skin regions, and geometrical border shape features are extracted. Genetic operators such as crossover and mutation are designed accordingly to fit the objectives of our proposed method. The performance of the proposed method is assessed using two skin image datasets and compared with six commonly used classification algorithms as well as the single tree GP method. The results show that the proposed method significantly outperformed all these classification methods. Being interpretable, this method may help dermatologist identify prominent skin image features, specific to a type of skin cancer.

Keywords

  • Genetic programming
  • Image classification
  • Feature extraction
  • Feature selection
  • Melanoma detection

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-03991-2_12
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-03991-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Ain, Q.U., Xue, B., Al-Sahaf, H., Zhang, M.: Genetic programming for skin cancer detection in dermoscopic images. In: Proceedings of the 2017 Congress on Evolutionary Computation, pp. 2420–2427. IEEE (2017)

    Google Scholar 

  2. Ain, Q.U., Xue, B., Al-Sahaf, H., Zhang, M.: Genetic programming for feature selection and feature construction in skin cancer image classification. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS (LNAI), vol. 11012, pp. 732–745. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97304-3_56

    CrossRef  Google Scholar 

  3. Al-Sahaf, H., Xue, B., Zhang, M.: A multitree genetic programming representation for automatically evolving texture image descriptors. In: Shi, Y. (ed.) SEAL 2017. LNCS, vol. 10593, pp. 499–511. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_41

    CrossRef  Google Scholar 

  4. Argenziano, G., Fabbrocini, G., et al.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Archiv. Dermatol. 134(12), 1563–1570 (1998)

    CrossRef  Google Scholar 

  5. Ballerini, L., Fisher, R.B., Aldridge, B., Rees, J.: A color and texture based hierarchical k-NN approach to the classification of non-melanoma skin lesions. In: Celebi, M., Schaefer, G. (eds.) Color Medical Image Analysis. LNCVB, vol. 6, pp. 63–86. Springer, Heidelberg (2013). https://doi.org/10.1007/978-94-007-5389-1_4

    CrossRef  Google Scholar 

  6. Esteva, A., Kuprel, B., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    CrossRef  Google Scholar 

  7. Garnavi, R., Aldeen, M., Bailey, J.: Computer-aided diagnosis of melanoma using border-and wavelet-based texture analysis. IEEE Trans. Inf. Technol. Biomed. 16(6), 1239–1252 (2012)

    CrossRef  Google Scholar 

  8. Hall, M., Frank, E., et al.: The WEKA data mining software: an update. SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

    MathSciNet  CrossRef  Google Scholar 

  9. Koza, J.R., Poli, R.: A genetic programming tutorial (2003)

    Google Scholar 

  10. Lee, J.H., Ahn, C.W., An, J.: An approach to self-assembling swarm robots using multitree genetic programming. Sci. World J. 2013, 10 (2013)

    Google Scholar 

  11. Lensen, A., Xue, B., Zhang, M.: Generating redundant features with unsupervised multi-tree genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 84–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_6

    CrossRef  Google Scholar 

  12. Luke, S.: Essentials of Metaheuristics, 2nd edn. Lulu, Morrisville (2013). http://cs.gmu.edu/~sean/book/metaheuristics/

  13. Maglogiannis, I., Doukas, C.N.: Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans. Inf. Technol. Biomed. 13(5), 721–733 (2009)

    CrossRef  Google Scholar 

  14. Mendonça, T., Ferreira, et al.: PH2-a dermoscopic image database for research and benchmarking. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5437–5440 (2013)

    Google Scholar 

  15. Muni, D.P., Pal, N.R., Das, J.: A novel approach to design classifiers using genetic programming. IEEE Trans. Evol. Comput. 8(2), 183–196 (2004)

    CrossRef  Google Scholar 

  16. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    CrossRef  Google Scholar 

  17. Oltean, M., Dumitrescu, D.: Multi expression programming. J. Genetic Program. Evol. Mach. (2002). Kluwer, second tour of review

    Google Scholar 

  18. Satheesha, T., Satyanarayana, D., et al.: Melanoma is skin deep: a 3D reconstruction technique for computerized dermoscopic skin lesion classification. IEEE J. Transl. Eng. Health Med. 5, 1–17 (2017)

    CrossRef  Google Scholar 

  19. Stewart, B.W., Wild, C.P., et al.: World cancer report 2014. Health (2017)

    Google Scholar 

  20. Stolz, W., Riemann, A., et al.: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant-melanoma. Eur. J. Dermatol. 4(7), 521–527 (1994)

    Google Scholar 

  21. Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2017)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qurrat Ul Ain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ain, Q.U., Al-Sahaf, H., Xue, B., Zhang, M. (2018). A Multi-tree Genetic Programming Representation for Melanoma Detection Using Local and Global Features. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03991-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03990-5

  • Online ISBN: 978-3-030-03991-2

  • eBook Packages: Computer ScienceComputer Science (R0)