Temperature Stress and Redox Homeostasis: The Synergistic Network of Redox and Chaperone System in Response to Stress in Plants

Part of the Heat Shock Proteins book series (HESP, volume 17)


A remarkable number of strategies has been developed by living organisms to mitigate conflict with environmental changes. The global environment rising with ambient temperature has a wide range of effects on plant growth, and therefore activation of various molecular defenses before the appearance of heat damage. Evidence revealed key components of stress that trigger enhanced tolerance, and some determinants for plant tolerance have been identified. The interplay between heat shock proteins (HSP) and redox proteins is supposed to be vital for the survival under extreme stress conditions. Any circumstance in which cellular redox homeostasis is disrupted can lead to the generation of reactive oxygen species (ROS) that are continuously generated in cells as an unavoidable consequence of aerobic life. Integrative network analysis of synthetic genetic interactions, protein-protein interactions, and functional annotations revealed many new functional processes linked to heat stress (HS) and oxidative stress (OS) tolerance, implicated upstream regulators activated by the either HS or OS, and revealed new connections between them. We present different models of acquired stress resistance to interpret the condition-specific involvement of genes. Considering the basic concepts and the recent advances, the following subsections provide an overview of calcium ion (Ca2+) and ROS interplay in abiotic signaling pathways; further we introduce several examples of chaperone and redox proteins that respond the change of cellular redox status under environmental circumstances. Thus, the involvement or contribution of redox proteins through the functional switching in conjunction with the HSP that prevent heat- and oxidative-induced protein aggregation in plants.


Calcium ion Chaperone Heat shock proteins Heat stress Oxidative stress Reactive oxygen species Redox proteins 



abscisic acid


alternative oxidase


ascorbic acid


ascorbate peroxidase


calcium ion




CaM-like protein








glutathione reductase




glutathione-S-transferase 1


glutathione peroxidase


Hsp70-interacting protein


heat stress


heat shock element


heat shock granule


heat shock protein


heat shock transcription factor


heat shock response


hydrogen peroxide


hydroxyl radical


high molecular weight


low molecular weight


NADPH-dependent TrxR


nitric oxide


oxidative stress


protein disulfide isomerase




respiratory burst oxidase homolog


reactive oxygen species


singlet oxygen


superoxide anion


superoxide dismutase




thioredoxin reductases


tetratricopeptide repeat


ribonucleotide reductase



We thank Lynne Stracovsky for English editing. This work was supported by the National Taiwan University (grant nos. 101R892003-105R892003 and 106R891506) and by the Ministry of Science and Technology, Taiwan (grant nos. 105-2311-B-002-033-MY3 and 107-2923-B-002-003-MY3) to T.L.J. and (grant no. 105-2311-B-024-001) to H.C.W.


  1. Ahn SG, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17:516–528PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alberti S, Esser C, Höhfeld J (2003) BAG-1-a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225–231PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109PubMedCrossRefGoogle Scholar
  4. Arrigo AP, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071PubMedPubMedCentralCrossRefGoogle Scholar
  5. Auh CK, Murphy TM (1995) Plasma membrane redox enzyme is involved in the synthesis of O2 and H2O2 by Phytophthora elicitor stimulated rose cells. Plant Physiol 107:1241–1247PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ballinger CA, Connell P, Wu Y et al (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bandyopadhyay S, Starke DW, Mieyal JJ, Gronostajski RM (1998) Thioltransferase (Glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I. J Biol Chem 273:392–397PubMedCrossRefGoogle Scholar
  8. Bäurle I (2016) Plant Heat Adaptation: priming in response to heat stress. F1000 Res 5. F1000 Faculty Rev-694Google Scholar
  9. Beissinger M, Buchner J (1998) How chaperones fold proteins. Biol Chem 379:245–259PubMedGoogle Scholar
  10. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRefGoogle Scholar
  11. Berndt C, Lillig CH, Holmgren A (2008) Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta 1783:641–650PubMedCrossRefGoogle Scholar
  12. Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bolwell G, Bindschedler L, Blee K et al (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376PubMedGoogle Scholar
  14. Bowler C, Slooten L, Vandenbranden S et al (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732PubMedPubMedCentralCrossRefGoogle Scholar
  15. Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364PubMedCrossRefGoogle Scholar
  16. Buchanan BB, Balmer Y (2005) REDOX REGULATION: A broadening horizon. Annu Rev Plant Biol 56:187–220PubMedCrossRefGoogle Scholar
  17. Buchanan B, Schürmann P, Wolosiuk R, Jacquot JP (1979) Thioredoxin and enzyme regulation. Trends Biochem Sci 7:93–96CrossRefGoogle Scholar
  18. Caldas T, Malki A, Kern R, Abdallah J, Richarme G (2006) The E. coli thioredoxin homolog YbbN/Trxsc is a chaperone and a weak protein oxidoreductase. Biochem Biophys Res Commun 343:780–786PubMedCrossRefGoogle Scholar
  19. Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A 91:7017–7021PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cheng Y, Song C (2006) Hydrogen peroxide homeostasis and signaling in plant cells. Sci China C Life Sci 49:1–11PubMedGoogle Scholar
  21. Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE (1998) Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat Struct Biol 5:400–406PubMedCrossRefGoogle Scholar
  22. Choi HI, Lee SP, Kim KS et al (2006) Redox-regulated cochaperone activity of the human DnaJ homolog Hdj2. Free Radic Biol Med 40:651–659PubMedCrossRefGoogle Scholar
  23. Chrestensen CA, Starke DW, Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem 275:26556–26565PubMedCrossRefGoogle Scholar
  24. Chuang SE, Blattner FR (1993) Characterization of twenty-six new heat shock genes of Escherichia coli. J Bacteriol 175:5242–5252PubMedPubMedCentralCrossRefGoogle Scholar
  25. Couturier J, Wu HC, Dhalleine T et al (2014) Monothiol glutaredoxin-BolA interactions: redox control of Arabidopsis thaliana BolA2 and SufE1. Mol Plant 7:187–205PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279:21749–21758PubMedCrossRefGoogle Scholar
  27. Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455–1461PubMedPubMedCentralCrossRefGoogle Scholar
  28. Davidson JF, Whyte B, Bissinger PH, Schiestl RH (1996) Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:5116–5121PubMedPubMedCentralCrossRefGoogle Scholar
  29. Davletova S, Rizhsky L, Liang H et al (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281PubMedPubMedCentralCrossRefGoogle Scholar
  30. Desikan R, A.-H.-Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172PubMedPubMedCentralCrossRefGoogle Scholar
  31. Deuerling E, Bukau B (2004) Chaperone-assisted folding of newly synthesized proteins in the cytosol. Afr J Biotechnol 39:261–277Google Scholar
  32. Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696PubMedCrossRefGoogle Scholar
  33. Ding HD, Zhang HJ, Zhu XH, Hui L, Liang JS, Lu B (2012) Involvement of calcium and calmodulin signaling in adaptation to heat stress-induced oxidative stress in Solanum lycopersicum L. leaves. Afr J Biotechnol 11:3259–3269Google Scholar
  34. Driedonks N, Xu J, Peters JL, Park S, Rieu I (2015) Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 6:999PubMedPubMedCentralCrossRefGoogle Scholar
  35. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95PubMedCrossRefGoogle Scholar
  36. Ellis J (1987) Proteins as molecular chaperones. Nature 328:378–379PubMedCrossRefGoogle Scholar
  37. Fernandes AP, Fladvad M, Berndt C et al (2005) A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. J Biol Chem 280:24544–24552PubMedCrossRefGoogle Scholar
  38. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedPubMedCentralCrossRefGoogle Scholar
  39. Giese KC, Vierling E (2002) Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 277:46310–46318PubMedCrossRefGoogle Scholar
  40. Giese KC, Vierling E (2004) Mutants in a small heat shock protein that affect the oligomeric state. Analysis and allele-specific suppression. J Biol Chem 279:32674–32683PubMedCrossRefGoogle Scholar
  41. Giesguth M, Sahm A, Simon S, Dietz KJ (2015) Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Lett 589:718–725PubMedCrossRefGoogle Scholar
  42. Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998) Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429–437PubMedCentralCrossRefPubMedGoogle Scholar
  43. Görlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271PubMedPubMedCentralCrossRefGoogle Scholar
  44. Graf PCF, Martinez-Yamout M, VanHaerents S, Lilie H, Dyson HJ, Jakob U (2004) Activation of the redox-regulated chaperone Hsp33 by domain unfolding. J Biol Chem 279:20529–20538PubMedPubMedCentralCrossRefGoogle Scholar
  45. Grant J, Loake G (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29PubMedPubMedCentralCrossRefGoogle Scholar
  46. Graumann J, Lilie H, Tang X et al (2001) Activation of the redox-regulated molecular chaperone Hsp33 – a two-step mechanism. Structure 9:377–387PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hahn JS, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24:5249–5256PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755PubMedPubMedCentralCrossRefGoogle Scholar
  49. Härndahl U, Kokke BPA, Gustavsson N et al (2001) The chaperone-like activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surface-exposed amphipathic α-helix. Biochim Biophys Acta 1545:227–237PubMedCrossRefGoogle Scholar
  50. Hemantaranjan A, Nishant Bhanu A, Singh MN, Yadav DK, Patel PK (2014) Heat stress responses and thermotolerance. Adv Plants Agric Res 1:00012Google Scholar
  51. Hirano T, Kinoshita N, Morikawa K, Yanagida M (1990) Snap helix with knob and hole: essential repeats in S. pombe nuclear protein nuc2+. Cell 60:319–328PubMedCrossRefGoogle Scholar
  52. Hoffmann JH, Linke K, Graf PCF, Lilie H, Jakob U (2004) Identification of a redox-regulated chaperone network. EMBO J 23:160–168PubMedPubMedCentralCrossRefGoogle Scholar
  53. Höhfeld J, Jentsch S (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16:6209–6216PubMedPubMedCentralCrossRefGoogle Scholar
  54. Höhfeld J, Minami Y, Hartl F (1995) Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83:589–598PubMedCrossRefGoogle Scholar
  55. Holmgren A (1976) Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A 73:2275–2279PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hoppe G, Chai Y, Crabb J, Sears J (2004) Protein s-glutathionylation in retinal pigment epithelium converts heat shock protein 70 to an active chaperone. Exp Eye Res 78:1085–1092PubMedCrossRefGoogle Scholar
  57. Hoshi T, Heinemann SH (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hu X, Wang W, Li C et al (2008) Cross-talks between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Grow Regul 55:183CrossRefGoogle Scholar
  59. Hu T, Chen K, Hu L, Amombo E, Fu J (2016) H2O2 and Ca2+ – based signaling and associated ion accumulation, antioxidant systems and secondary metabolism orchestrate the response to NaCl stress in perennial ryegrass. Sci Rep 6:36396PubMedPubMedCentralCrossRefGoogle Scholar
  60. Huang S, Ratliff KS, Schwartz MP, Spenner JM, Matouschek A (1999) Mitochondria unfold precursor proteins by unraveling them from their N-termini. Nat Struct Mol Biol 6:1132–1138CrossRefGoogle Scholar
  61. Hübel A, Schöffl F (1994) Arabidopsis heat shock factor: isolation and characterization of the gene and the recombinant protein. Plant Mol Biol 26:353–362PubMedCrossRefGoogle Scholar
  62. Ilbert M, Horst J, Ahrens S et al (2007) The redox-switch domain of Hsp33 functions as dual stress sensor. Nat Struct Mol Biol 14:556–563PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jacquier-Sarlin MR, Polla BS (1996) Dual regulation of heat-shock transcription factor (HSF) activation and DNA-binding activity by H2O2: role of thioredoxin. Biochem J 318:187–193PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jakob U, Muse W, Eser M, Bardwell JCA (1999) Chaperone activity with a redox switch. Cell 96:341–352PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jiang M, Zhang J (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. Plant Cell Environ 26:929–939PubMedCrossRefGoogle Scholar
  66. Jung YJ, Melencion SMB, Lee ES et al (2015) Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress. Front Plant Sci 6:1141PubMedPubMedCentralGoogle Scholar
  67. Kalmar B, Greensmith L (2009) Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration-evidence for neuroprotective and neurotoxic effects. Cell Mol Biol Lett 14:319PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kern R, Malki A, Holmgren A, Richarme G (2003) Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem J 371:965–972PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kim KS, Choi SY, Kwon HY, Won MH, Kang TC, Kang JH (2002) Aggregation of α-synuclein induced by the Cu, Zn-superoxide dismutase and hydrogen peroxide system. Free Radic Biol Med 32:544–550PubMedCrossRefGoogle Scholar
  70. Kim KH, Alam I, Kim YG et al (2012) Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett 34:371–377PubMedCrossRefGoogle Scholar
  71. Kirschner M, Winkelhaus S, Thierfelder JM, Nover L (2000) Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts. Plant J 24:397–412PubMedCrossRefGoogle Scholar
  72. Kong F, Deng Y, Wang G, Wang J, Liang X, Meng Q (2014) LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. J Integr Plant Biol 56:63–74PubMedCrossRefGoogle Scholar
  73. Kthiri F, Le HT, Tagourti J et al (2008) The thioredoxin homolog YbbN functions as a chaperone rather than as an oxidoreductase. Biochem Biophys Res Commun 374:668–672PubMedCrossRefGoogle Scholar
  74. Kumsta C, Jakob U (2009) Redox-regulated chaperones. Biochemistry 48:4666–4676PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lamb JR, Tugendreich S, Hieter P (1995) Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 20:257–259PubMedCrossRefGoogle Scholar
  76. Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413PubMedCrossRefGoogle Scholar
  77. Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695PubMedPubMedCentralCrossRefGoogle Scholar
  78. Laskey RA, Honda BM, Mills AD, Finch JT (1978) Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275:416–420PubMedCrossRefGoogle Scholar
  79. Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239:3436–3444PubMedGoogle Scholar
  80. LaVallie ER, Diblasio-Smith EA, Collins-Racie LA, Lu Z, McCoy JM (2003) Thioredoxin and related proteins as multifunctional fusion tags for soluble expression in E. coli. Methods Mol Biol 205:119–140PubMedGoogle Scholar
  81. Le HT, Gautier V, Kthiri F, Kohiyama M, Katayama T, Richarme G (2011) DNA replication defects in a mutant deficient in the thioredoxin homolog YbbN. Biochem Biophys Res Commun 405:52–57PubMedCrossRefGoogle Scholar
  82. Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A (2002) Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14:2627–2641PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lee J, Schöffl F (1996) An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol Gen Genet 252:11–19PubMedGoogle Scholar
  84. Lee JH, Hübel A, Schöffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8:603–612PubMedCrossRefGoogle Scholar
  85. Lennon BW, Williams CH, Ludwig ML (2000) Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Science 289:1190–1194PubMedCrossRefGoogle Scholar
  86. Li C, Chen Q, Gao X et al (2005) AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci China C Life Sci 48:540–550PubMedCrossRefGoogle Scholar
  87. Lin BL, Wang JS, Liu HC et al (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6:201–208PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lindquist S, Craig SA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677CrossRefGoogle Scholar
  89. Linke K, Jakob U (2003) Not every disulfide lasts forever: disulfide bond formation as a redox switch. Antioxid Redox Signal 5:425–434PubMedCrossRefGoogle Scholar
  90. Liu HT, Li B, Shang ZL et al (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195PubMedPubMedCentralCrossRefGoogle Scholar
  91. Liu HT, Sun DY, Zhou RG (2005) Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in Arabidopsis. Plant Cell Environ 28:1276–1284CrossRefGoogle Scholar
  92. Liu HT, Gao F, Li GL et al (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773PubMedCrossRefGoogle Scholar
  93. Liu Y, Zhang C, Chen J et al (2013) Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiol Biochem 64:92–98PubMedCrossRefGoogle Scholar
  94. Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267PubMedPubMedCentralGoogle Scholar
  95. Lund P (2006) Chaperones, molecular. Reviews in cell biology and molecular medicine. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  96. Mahalingam R, Shah N, Scrymgeour A, Fedoroff N (2005) Temporal evolution of the Arabidopsis oxidative stress response. Plant Mol Biol 57:709–730PubMedCrossRefGoogle Scholar
  97. Martin JL (1995) Thioredoxin-a fold for all reasons. Structure 3:245–250PubMedPubMedCentralCrossRefGoogle Scholar
  98. May T, Soll J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12:53–64PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670PubMedPubMedCentralCrossRefGoogle Scholar
  100. McGee DJ, Kumar S, Viator RJ et al (2006) Helicobacter pylori thioredoxin is an arginase chaperone and guardian against oxidative and nitrosative stresses. J Biol Chem 281:3290–3296PubMedCrossRefGoogle Scholar
  101. Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP (2008) Glutaredoxins and thioredoxins in plants. Biochim Biophys Acta 1783:589–600PubMedCrossRefGoogle Scholar
  102. Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17:1124–1160PubMedCrossRefGoogle Scholar
  103. Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288PubMedPubMedCentralCrossRefGoogle Scholar
  104. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489PubMedCrossRefGoogle Scholar
  105. Miroshnichenko S, Tripp J, Nieden UZ, Neumann D, Conrad U, Manteuffel R (2005) Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J 41:269–281PubMedCrossRefGoogle Scholar
  106. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  107. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  108. Mittler R, Vanderauwera S, Suzuki N et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309PubMedCrossRefGoogle Scholar
  109. Moon JC, Hah YS, Kim WY et al (2005) Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem 280:28775–28784PubMedCrossRefGoogle Scholar
  110. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796PubMedPubMedCentralCrossRefGoogle Scholar
  111. Nishida M, Harada S, Noguchi S, Satow Y, Inoue H, Takahashi K (1998) Three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate: catalytic roles of Cys10 and His106. J Mol Biol 281:135–147PubMedCrossRefGoogle Scholar
  112. Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA (2006) Regulon and promoter analysis of the E. coli heat-shock factor, σ32, reveals a multifaceted cellular response to heat stress. Genes Dev 20:1776–1789PubMedPubMedCentralCrossRefGoogle Scholar
  113. Nordlund P, Reichard P (2006) Ribonucleotide reductases. Annu Rev Biochem 75:681–706PubMedCrossRefGoogle Scholar
  114. Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759PubMedCrossRefGoogle Scholar
  115. Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65PubMedCrossRefGoogle Scholar
  116. Ojeda L, Keller G, Muhlenhoff U, Rutherford JC, Lill R, Winge DR (2006) Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J Biol Chem 281:17661–17669PubMedCrossRefGoogle Scholar
  117. Paget MS, Buttner MJ (2003) Thiol-based regulatory switches. Ann Rev Genet 37:91–121PubMedCrossRefGoogle Scholar
  118. Panchuk II, Volkov RA, Schöffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853PubMedPubMedCentralCrossRefGoogle Scholar
  119. Paranhos A, Fernandez-Tarrago J, Corchete P (1999) Relationship between active oxygen species and cardenolide production in cell cultures of Digitalis thapsi: effect of calcium restriction. New Phytol 141:51–60CrossRefGoogle Scholar
  120. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Ann Rev Genet 27:437–496PubMedCrossRefGoogle Scholar
  121. Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468PubMedPubMedCentralCrossRefGoogle Scholar
  122. Peremyslov VV, Hagiwara Y, Dolja VV (1999) HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci U S A 96:14771–14776PubMedPubMedCentralCrossRefGoogle Scholar
  123. Plater ML, Goode D, Crabbe MJC (1996) Effects of site-directed mutations on the chaperone-like activity of αB-crystallin. J Biol Chem 271:28558–28566PubMedCrossRefGoogle Scholar
  124. Poole LB, Reynolds CM, Wood ZA, Karplus PA, Ellis HR, Li Calzi M (2000) AhpF and other NADH:peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase. Eur J Biochem 267:6126–6133PubMedCrossRefGoogle Scholar
  125. Port M, Tripp J, Zielinski D et al (2004) Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiol 135:1457–1470PubMedPubMedCentralCrossRefGoogle Scholar
  126. Prasad TK (1996) Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J 10:1017–1026CrossRefGoogle Scholar
  127. Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19:1851–1865PubMedPubMedCentralCrossRefGoogle Scholar
  128. Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479PubMedPubMedCentralCrossRefGoogle Scholar
  129. Ritossa FM (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573CrossRefGoogle Scholar
  130. Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151PubMedPubMedCentralCrossRefGoogle Scholar
  131. Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Chang Hum Health 2:90–104CrossRefGoogle Scholar
  132. Rüdiger S, Schneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J 20:1042–1050PubMedPubMedCentralCrossRefGoogle Scholar
  133. Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565PubMedCrossRefGoogle Scholar
  134. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417PubMedPubMedCentralCrossRefGoogle Scholar
  135. Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268PubMedCrossRefGoogle Scholar
  136. Sargsyan E, Baryshev M, Szekely L, Sharipo A, Mkrtchian S (2002) Identification of ERp29, an endoplasmic reticulum lumenal protein, as a new member of the thyroglobulin folding complex. J Biol Chem 77:17009–17015CrossRefGoogle Scholar
  137. Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393PubMedPubMedCentralCrossRefGoogle Scholar
  138. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186PubMedCrossRefGoogle Scholar
  139. Saxena I, Srikanth S, Chen Z (2016) Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci 7:570PubMedPubMedCentralCrossRefGoogle Scholar
  140. Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 66:361–378PubMedCrossRefGoogle Scholar
  141. Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237PubMedPubMedCentralCrossRefGoogle Scholar
  142. Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:183–197PubMedPubMedCentralCrossRefGoogle Scholar
  143. Steinhorst L, Kudla J (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol 163:471–485PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sun AZ, Guo FQ (2016) Chloroplast retrograde regulation of heat stress responses in plants. Front Plant Sci 7:398PubMedPubMedCentralGoogle Scholar
  145. Sung DY, Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol 132:979–987PubMedPubMedCentralCrossRefGoogle Scholar
  146. Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126:789–800PubMedPubMedCentralCrossRefGoogle Scholar
  147. Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699PubMedCrossRefGoogle Scholar
  148. Takashima Y, Hirota K, Nakamura H et al (1999) Differential expression of glutaredoxin and thioredoxin during monocytic differentiation. Immunol Lett 68:397–401PubMedCrossRefGoogle Scholar
  149. Vallelian-Bindschedler L, Schweizer P, Mosinger E, Metraux JP (1998) Heat-induced resistance in barley to powdery mildew (Blumeria graminis f.sp. hordei) is associated with a burst of active oxygen species. Physiol Plant Pathol 52:165–199Google Scholar
  150. van der Luit A, Olivari C, Haley A, Knight M, Trewavas A (1999) Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 121:705–714PubMedCentralCrossRefPubMedGoogle Scholar
  151. van Montfort R, Slingsby C, Vierling E (2001) Structure and function of the small heat shock protein/a-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156PubMedCrossRefGoogle Scholar
  152. Veal EA, Findlay VJ, Day AM et al (2004) A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol Cell 15:129–139PubMedCrossRefGoogle Scholar
  153. Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620CrossRefGoogle Scholar
  154. Vignols F, Mouaheb N, Thomas D, Meyer Y (2003) Redox control of Hsp70-co-chaperone interaction revealed by expression of a thioredoxin-like Arabidopsis protein. J Biol Chem 278:4516–4523PubMedCrossRefGoogle Scholar
  155. Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252PubMedCrossRefGoogle Scholar
  156. Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 131:127–142CrossRefGoogle Scholar
  157. Weber C, Nover L, Fauth M (2008) Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant J 56:517–530PubMedCrossRefGoogle Scholar
  158. Wells WW, Xu DP, Yang YF, Rocque PA (1990) Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem 265:15361–15364PubMedGoogle Scholar
  159. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511PubMedPubMedCentralCrossRefGoogle Scholar
  160. Wingert RA, Galloway JL, Barut B et al (2005) Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature 436:1035–1039PubMedCrossRefGoogle Scholar
  161. Winter J, Linke K, Jatzek A, Jakob U (2005) Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol Cell 17:381–392PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653PubMedCrossRefGoogle Scholar
  163. Wu HC, Luo DL, Vignols F, Jinn TL (2012) Heat shock-induced biphasic Ca2+ signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant Cell Environ 35:1543–1557PubMedCrossRefGoogle Scholar
  164. Xue HW, Chen X, Mei Y (2009) Function and regulation of phospholipid signaling in plants. Biochem J 421:145–156PubMedPubMedCentralCrossRefGoogle Scholar
  165. Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci U S A 99:4097–4102PubMedPubMedCentralCrossRefGoogle Scholar
  166. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791PubMedCrossRefGoogle Scholar
  167. Zhang W, Zhou RG, Gao YJ et al (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149:1773–1784PubMedPubMedCentralCrossRefGoogle Scholar
  168. Zhong M, Orosz A, Wu C (1998) Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol Cell 2:101–108PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biological Sciences and TechnologyNational University of TainanTainanTaiwan
  2. 2.BPMP, CNRS, INRA, Montpellier SupAgroUniv MontpellierMontpellierFrance
  3. 3.Department of Life Science and Institute of Plant BiologyNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations