Skip to main content

Design of a Bio-Inspired Controller to Operate a Modular Robot Autonomously

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11238))

Abstract

A modular robot can be reconfigured and reorganized to perform different tasks. Due to the large number of configurations that this type of robot can have, several types of techniques have been developed to generate locomotion tasks in an adaptive manner. One of these techniques transfers sets of parameters to the robot controller from a simulation. However, in most cases the simulated approach is not appropriate, since it does not take into account all physical interactions between the robot and the environment. This paper shows the design of a flexible controller that adapts to the different configurations of a modular chain-type robot, which coordinates the movements of the robot using a Central Pattern Generator (CPG). The CPG is integrated with an optimization algorithm to estimate sets of movements, which allow the robot to navigate in its environment autonomously from the information of sensors and in real time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The graphical user interface, the programs and steps necessary to assemble the robot are available at the following link: https://sites.google.com/view/emergemodular.

References

  1. Brunete, A., Hernando, M., Gambao, E.: Offline GA-based optimization for heterogeneous modular multiconfigurable chained microrobots. IEEE/ASME Trans. Mech. 18(2), 578–585 (2013)

    Article  Google Scholar 

  2. Chand, P.: Fuzzy reactive control for wheeled mobile robots. In: 2015 6th International Conference on Automation, Robotics and Applications, ICARA, pp. 167–172, February 2015

    Google Scholar 

  3. Cohen, A.H., Holmes, P.J., Rand, R.H.: The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. J. Math. Biol. 13(3), 345–369 (1982)

    Article  MathSciNet  Google Scholar 

  4. Crespi, A., Ijspeert, A.J.: Online optimization of swimming and crawling in an amphibious snake robot. IEEE Trans. Robot. 24(1), 75–87 (2008)

    Article  Google Scholar 

  5. Kernbach, S., et al.: Symbiotic robot organisms: REPLICATOR and SYMBRION projects, January 2008

    Google Scholar 

  6. Lachat, D., Crespi, A., Ijspeert, A.J.: BoxyBot: a swimming and crawling fish robot controlled by a central pattern generator. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2006, pp. 643–648, February 2006

    Google Scholar 

  7. Li, G., Urbina, R., Zhang, H., Gomez, J.G.: Concept design and simulation of a water proofing modular robot for amphibious locomotion. In: 2017 International Conference on Advanced Mechatronic Systems, ICAMechS, pp. 145–150, December 2017

    Google Scholar 

  8. Li, L., Wang, C., Xie, G.: A general CPG network and its implementation on the microcontroller. Neurocomputing 167, 299–305 (2015)

    Article  Google Scholar 

  9. Liu, C., Liu, J., Moreno, R., Veenstra, F., Faina, A.: The impact of module morphologies on modular robots. In: 2017 18th International Conference on Advanced Robotics, ICAR, pp. 237–243, July 2017

    Google Scholar 

  10. Marbach, D., Ijspeert, A.J.: Online optimization of modular robot locomotion. In: IEEE International Conference Mechatronics and Automation, vol. 1, pp. 248–253, July 2005

    Google Scholar 

  11. Monsalve, J., Leon, J., Melo, K.: Modular snake robot oriented open simulation software. In: The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, pp. 546–550, June 2014

    Google Scholar 

  12. Moreno, R., Liu, C., Faina, A., Hernandez, H., Gomez, J.: The EMeRGE modular robot, an open platform for quick testing of evolved robot morphologies. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 71–72. ACM, New York (2017)

    Google Scholar 

  13. Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robot. Autom. Mag. 14(1), 71–78 (2007)

    Article  Google Scholar 

  14. Ben-Tzvi, P., Moubarak, P.: Modular and reconfigurable mobile robotics. Robot. Auton. Syst. 1(60), 1648–1663 (2012)

    Google Scholar 

  15. Suzuki, H., Lee, J.H., Okamoto, S.: Development of semi-passive biped walking robot embedded with CPG-based locomotion control. In: 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI, pp. 75–78, June 2017

    Google Scholar 

  16. Tavakoli, M., Viegas, C., Marques, L., Pires, J.N., de Almeida, A.T.: Magnetic omnidirectional wheels for climbing robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 266–271, November 2013

    Google Scholar 

  17. Tian, Y., Gomez, V., Ma, S.: Influence of two SLAM algorithms using serpentine locomotion in a featureless environment. In: 2015 IEEE International Conference on Robotics and Biomimetics, ROBIO, pp. 182–187, December 2015

    Google Scholar 

  18. van Laarhoven, P.J., Aarts, E.H.: Simulated Annealing: Theory and Applications. Mathematics and Its Applications. Springer, Dordrecht (1987). https://doi.org/10.1007/978-94-015-7744-1

    Book  MATH  Google Scholar 

  19. Vonásek, V., Faigl, J.: Evolution of multiple gaits for modular robots. In: 2016 IEEE Symposium Series on Computational Intelligence, SSCI, pp. 1–8, December 2016

    Google Scholar 

  20. Vonásek, V., Neumann, S., Oertel, D., Wörn, H.: Online motion planning for failure recovery of modular robotic systems. In: 2015 IEEE International Conference on Robotics and Automation, ICRA, pp. 1905–1910, May 2015

    Google Scholar 

  21. Wu, W., Guan, Y., Yang, Y., Dong, B.: Multi-objective configuration optimization of assembly-level reconfigurable modular robots. In: 2016 IEEE International Conference on Information and Automation, ICIA, pp. 528–533, August 2016

    Google Scholar 

  22. Xi, B., Liu, Z., Raghavachari, M., Xia, C.H., Zhang, L.: A smart hill-climbing algorithm for application server configuration. In: Proceedings of the 13th International Conference on World Wide Web, WWW 2004, pp. 287–296. ACM, New York (2004)

    Google Scholar 

  23. Yim, M., et al.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    Article  MathSciNet  Google Scholar 

  24. Zhao, W., Hu, Y., Zhang, L., Wang, L.: Design and CPG-based control of biomimetic robotic fish. IET Control Theory Appl. 3(3), 281–293 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hernández, H., Moreno, R., Faina, A., Gomez, J. (2018). Design of a Bio-Inspired Controller to Operate a Modular Robot Autonomously. In: Simari, G., Fermé, E., Gutiérrez Segura, F., Rodríguez Melquiades, J. (eds) Advances in Artificial Intelligence - IBERAMIA 2018. IBERAMIA 2018. Lecture Notes in Computer Science(), vol 11238. Springer, Cham. https://doi.org/10.1007/978-3-030-03928-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03928-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03927-1

  • Online ISBN: 978-3-030-03928-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics