Skip to main content

Analysis of Encoder Representations as Features Using Sparse Autoencoders in Gradient Boosting and Ensemble Tree Models

  • 1014 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11238)


The performance of learning algorithms relies on factors such as the training strategy, the parameter tuning approach, and data complexity; in this scenario, extracted features play a fundamental role. Since not all the features maintain useful information, they can add noise, thus decreasing the performance of the algorithms. To address this issue, a variety of techniques such as feature ex-traction, feature engineering and feature selection have been developed, most of which fall into the unsupervised learning category. This study explores the generation of such features, using a set of k encoder layers, which are used to produce a low dimensional feature set F. The encoder layers were trained using a two-layer depth sparse autoencoder model, where PCA was used to estimate the right number of hidden units in the first layer. Then, a set of four algorithms, which belong to the gradient boosting and ensemble families were trained using the generated features. Finally, a performance comparison, using the encoder features against the original features was made. The results show that by using the reduced features it is possible to achieve equal or better results. Also, the approach improves more with highly imbalanced data sets.


  • Unsupervised learning
  • Sparse autoencoders
  • Feature generation
  • Gradient boosting models
  • Ensemble models

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-03928-8_13
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-03928-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. Martínez-Romo, J.C., Luna-rosas, F.J., Mora-gonzález, M., De Luna-ortega, C.A.: Optimal feature generation with genetic algorithms and FLDR in a restricted-vocabulary speech recognition system. In: Bio-Inspired Computational Algorithms and Their Applications, pp. 235–262 (2012).

    Google Scholar 

  2. Cheng, W., Kasneci, G., Graepel, T., Stern, D., Herbrich, R.: Automated feature generation from structured knowledge. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, p. 1395 (2011).

  3. Katz, G., Shin, E.C.R., Song, D.: ExploreKit: automatic feature generation and selection. In: Proceedings - IEEE 16th International Conference on Data Mining (ICDM), pp. 979–984 (2016).

  4. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    CrossRef  MATH  Google Scholar 

  5. Ng, A.: Sparse autoencoder. In: CS294A Lecture Notes, pp. 1–19 (2011).

  6. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes, pp. 1–14 (2013).

  7. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of 25th Annual International Conference on Machine Learning, ICML 2008, pp. 1096–1103 (2008).

  8. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Guyon, I., Dror, G., Lemaire, V., Taylor, G.W., Silver, D.L. (eds.) ICML Unsupervised and Transfer Learning, pp. 37–50 (2012).

  9. Yu, W., Zeng, G., Luo, P., Zhuang, F., He, Q., Shi, Z.: Embedding with autoencoder regularization. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 208–223. Springer, Heidelberg (2013).

    CrossRef  Google Scholar 

  10. Bosch, N., Paquette, L.: Unsupervised deep autoencoders for feature extraction with educational data. In: Deep Learning with Educational Data Workshop at the 10th International Conference on Educational Data Mining (2017)

    Google Scholar 

  11. Meng, Q., Catchpoole, D., Skillicom, D., Kennedy, P.J.: Relational autoencoder for feature extraction. In: Proceedings of International Joint Conference Neural Networks, May 2017, pp. 364–371 (2017).

  12. DeVries, T., Taylor, G.W.: Dataset augmentation in feature space, pp. 1–12 (2017).

  13. Yousefi-azar, M., Varadharajan, V., Hamey, L., Tupakula, U.: Autoencoder-based feature learning for cyber security applications. In: International Joint Conference on Neural Networks 2017 (IJCNN), pp. 3854–3861 (2017).

  14. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).

    CrossRef  Google Scholar 

  15. Makhzani, A., Frey, B.: k-sparse autoencoders (2013).

  16. Ju, Y., Guo, J., Liu, S.: A deep learning method combined sparse autoencoder with SVM. In: 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 257–260. IEEE (2015).

  17. Kampffmeyer, M., Løkse, S., Bianchi, F.M., Jenssen, R., Livi, L.: Deep kernelized autoencoders. In: Sharma, P., Bianchi, F. (eds.) Image Analysis. SCIA 2017. LNCS, vol. 10269, pp. 419–430. Springer, Cham (2017).

    CrossRef  Google Scholar 

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Chollet, F.: Keras. GitHub Repos (2015).

  20. Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Min. 10, 36 (2017).

    CrossRef  Google Scholar 

  21. Ke, G., Meng, Q., Wang, T., Chen, W., Ma, W., Liu, T.-Y.: LightGBM: a highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst. 30, 3148–3156 (2017)

    Google Scholar 

  22. Dorogush, A.V., Ershov, V., Yandex, A.G.: CatBoost: gradient boosting with categorical features support. In: Workshop on ML System, NIPS 2017, pp. 1–7 (2017)

    Google Scholar 

  23. Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class AdaBoost. Stat. Interface 2, 349–360 (2009).

    MathSciNet  CrossRef  MATH  Google Scholar 

  24. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001).

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Luis Aguilar or L. Antonio Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Aguilar, L., Aguilar, L.A. (2018). Analysis of Encoder Representations as Features Using Sparse Autoencoders in Gradient Boosting and Ensemble Tree Models. In: Simari, G., Fermé, E., Gutiérrez Segura, F., Rodríguez Melquiades, J. (eds) Advances in Artificial Intelligence - IBERAMIA 2018. IBERAMIA 2018. Lecture Notes in Computer Science(), vol 11238. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03927-1

  • Online ISBN: 978-3-030-03928-8

  • eBook Packages: Computer ScienceComputer Science (R0)