Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: Proceedings of the 20th ACM Conference on Hypertext and Hypermedia, pp. 73–82. ACM (2009)
Google Scholar
Mcginty, L., Smyth, B.: Adaptive selection: an analysis of critiquing and preference-based feedback in conversational recommender systems. Int. J. Electron. Commer. 11(2), 35–57 (2006)
CrossRef
Google Scholar
Lops, P., De Gemmis, M., Semeraro, G., Narducci, F., Musto, C.: Leveraging the LinkedIn social network data for extracting content-based user profiles. In: RecSys 2011 - Proceedings of the 5th ACM Conference on Recommender Systems, pp. 293–296 (2011)
Google Scholar
Basile, P., Musto, C., de Gemmis, M., Lops, P., Narducci, F., Semeraro, G.: Content-based recommender systems + DBpedia knowledge = semantics-aware recommender systems. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 163–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12024-9_21
CrossRef
Google Scholar
Musto, C., Narducci, F., Lops, P., de Gemmis, M.: Combining collaborative and content-based techniques for tag recommendation. In: Buccafurri, F., Semeraro, G. (eds.) EC-Web 2010. LNBIP, vol. 61, pp. 13–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15208-5_2
CrossRef
Google Scholar
Felfernig, A., Burke, R., Pu, P.: Preface to the special issue on user interfaces for recommender systems. User Model. User-Adapt. Interact. 22(4), 313–316 (2012)
CrossRef
Google Scholar
Narducci, F., Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Leveraging encyclopedic knowledge for transparent and serendipitous user profiles. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 350–352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38844-6_36
CrossRef
Google Scholar
Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. User Model. User-Adapt. Interact. 22(1–2), 125–150 (2012)
CrossRef
Google Scholar
Berkovsky, S., Freyne, J., Oinas-Kukkonen, H.: Influencing individually: fusing personalization and persuasion. ACM Trans. Interact. Intell. Syst. (TiiS) 2(2), 9 (2012)
Google Scholar
Tintarev, N., Masthoff, J.: Evaluating the effectiveness of explanations for recommender systems. User Model. User-Adapt. Interact. 22(4–5), 399–439 (2012)
CrossRef
Google Scholar
Kveton, B., Berkovsky, S.: Minimal interaction content discovery in recommender systems. ACM Trans. Interact. Intell. Syst. (TiiS) 6(2), 15 (2016)
Google Scholar
Sun, Y., Zhang, Y., Chen, Y., Jin, R.: Conversational recommendation system with unsupervised learning. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 397–398. ACM (2016)
Google Scholar
Christakopoulou, K., Radlinski, F., Hofmann, K.: Towards conversational recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 815–824. ACM (2016)
Google Scholar
Smyth, B., McGinty, L., Reilly, J., McCarthy, K.: Compound critiques for conversational recommender systems. In: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2004, pp. 145–151. IEEE Computer Society, Washington, DC (2004). https://doi.org/10.1109/WI.2004.45
Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1091–1095 (2007)
CrossRef
Google Scholar
Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)
CrossRef
Google Scholar
Musto, C., Lops, P., Basile, P., de Gemmis, M., Semeraro, G.: Semantics-aware graph-based recommender systems exploiting linked open data. In: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization, pp. 229–237. ACM (2016)
Google Scholar
Musto, C., Narducci, F., Lops, P., De Gemmis, M., Semeraro, G.: ExpLOD: a framework for explaining recommendations based on the linked open data cloud. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 151–154. ACM (2016)
Google Scholar
Knijnenburg, B.P., Willemsen, M.C.: Evaluating recommender systems with user experiments. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 309–352. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_9
CrossRef
Google Scholar