Compact Preference Representation via Fuzzy Constraints in Stable Matching Problems: Theoretical and Experimental Studies

  • Maria Silvia PiniEmail author
  • Francesca Rossi
  • Kristen Brent Venable
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11298)


The stable matching problem has many practical applications in two-sided markets, like those that assign doctors to hospitals or students to schools. Usually it is assumed that all agents in each side explicitly express a preference ordering over those in the other side. This can be unfeasible and impractical when the set of agents is very big. However, usually this set has a combinatorial structure, since each agent is often described by some features. To tackle these scenarios, we define a framework for stable matching problems where agents are allowed to express their preferences over those of the other group in a compact way, via soft constraints over the features describing these agents. We focus on a special kind of soft constraints, namely fuzzy constraints. We provide a solving engine for this new kind of stable matching problems that does not increase the time complexity of the classical Gale-Shapley algorithm, while maintaining stability of the matching returned. We then evaluate the approach experimentally.


  1. 1.
    Abdulkadiroglu: Generalized matching for school choice. Working paper, Duke University (2011)Google Scholar
  2. 2.
    Bistarelli, S., Foley, S., O’Sullivan, B., Santini, F.: From marriages to coalitions: a soft CSP approach. In: Oddi, A., Fages, F., Rossi, F. (eds.) CSCLP 2008. LNCS (LNAI), vol. 5655, pp. 1–15. Springer, Heidelberg (2009). Scholar
  3. 3.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. JAIR 21, 135–191 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brafman, R.I., Rossi, F., Salvagnin, D., Venable, K.B., Walsh, T.: Finding the next solution in constraint- and preference-based knowledge representation formalisms. In: Proceedings of KR 2010 (2010)Google Scholar
  6. 6.
    Dechter, R.: Tractable structures for CSPs. In: Rossi, F., Van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier, Amsterdam (2005)Google Scholar
  7. 7.
    Dechter, R., Flerova, N., Marinescu, R.: Search algorithms for M best solutions for graphical models. In: Proceedings of AAAI 2012. AAAI Press (2012)Google Scholar
  8. 8.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)zbMATHGoogle Scholar
  9. 9.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Amer. Math. Monthly 69, 9–14 (1962)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gent, I.P., Irving, R.W., Manlove, D.F., Prosser, P., Smith, B.M.: A constraint programming approach to the stable marriage problem. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 225–239. Springer, Heidelberg (2001). Scholar
  11. 11.
    Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Boston (1989)zbMATHGoogle Scholar
  12. 12.
    Iwama, K., Miyazaki, S., Morita, Y., Manlove, D.: Stable marriage with incomplete lists and ties. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999). Scholar
  13. 13.
    Manlove, D.F., O’Malley, G., Prosser, P., Unsworth, C.: A constraint programming approach to the hospitals/residents problem. In: Van Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 155–170. Springer, Heidelberg (2007). Scholar
  14. 14.
    Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific Publishing, Singapore (2013)CrossRefGoogle Scholar
  15. 15.
    Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Rossi, F., Van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier, Amsterdam (2005)Google Scholar
  16. 16.
    Pilotto, E., Rossi, F., Venable, K.B., Walsh, T.: Compact preference representation in stable marriage problems. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS (LNAI), vol. 5783, pp. 390–401. Springer, Heidelberg (2009). Scholar
  17. 17.
    Pini, M.S., Rossi, F., Venable, K.B.: Stable matching problems with soft constraints. In: Proceedings of AAMAS 2014 - Extended Abstract, pp. 1511–1512 (2014)Google Scholar
  18. 18.
    Pini, M.S., Rossi, F., Venable, K.B.: Compact preference representation via fuzzy constraints in stable matching problems. In: Rothe, J. (ed.) ADT 2017. LNCS (LNAI), vol. 10576, pp. 333–338. Springer, Cham (2017). Scholar
  19. 19.
    Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Manipulation complexity and gender neutrality in stable marriage procedures. Autonomous Agents and Multi-Agent Systems 22, 183–199 (2011)CrossRefGoogle Scholar
  20. 20.
    Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Stability, optimality and manipulation in matching problems with weighted preferences. Algorithms 6, 782–804 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Roth, A.E.: The evolution of the labor market for medical interns and residents: a case study in game theory. J. Polit. Econ. 92, 991–1016 (1984)CrossRefGoogle Scholar
  22. 22.
    Teo, C.-P., Sethuraman, J., Tan, W.-P.: Gale-shapley stable marriage problem revisited: strategic issues and applications. Manag. Sci. 47(9), 1252–1267 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maria Silvia Pini
    • 1
    Email author
  • Francesca Rossi
    • 1
    • 2
  • Kristen Brent Venable
    • 3
  1. 1.University of PadovaPaduaItaly
  2. 2.IBM T.J. Watson Research CenterYorktown HeightsUSA
  3. 3.Tulane University and IHMCNew OrleansUSA

Personalised recommendations