Skip to main content

Virtual Reality System for Children Lower Limb Strengthening with the Use of Electromyographic Sensors

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11241)

Abstract

This article presents a virtual system for children lower limb strengthening by using electromyographic sensors and the graphics motor Unity 3D. The system allows the acquisition and processing of electromyographic EMG signals through Bluetooth wireless communication which also allows to control virtual environments. Two videogames have been designed with different difficulty levels and easy execution, the interaction with the virtual environments generate muscle strengthening exercises. Moreover, five users have performed experimental tests (3 boys and 2 girls), the children are between 8 and 13 years old, the following inclusion criteria has been taken into account: users must have ages > 7 and < 14 years old and also must have any muscle affectation, additionally, the exclusion criteria is: the users who have any visual deficiency and/or several hearing impairment. Finally, users did perform the usability test SEQ with the following results (59.6 ± 0.33), which allows to know the acceptation level of the virtual system for children lower limb strengthening.

Keywords

  • Muscle strengthening
  • Virtual reality
  • Software unity 3D
  • Electromyographic sensor
  • SEQ

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-03801-4_20
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-03801-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

References

  1. Bryanton, A., Bosse, J., Brien, M., Mclean, J., McCormick, A., Sveistrup, H.: Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychol. Behav. 9(2), 123–128 (2006)

    CrossRef  Google Scholar 

  2. Jang, S.H., et al.: Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke. Arch. Phys. Med. Rehabil. 86, 2218–2223 (2005)

    CrossRef  Google Scholar 

  3. Mirelman, A., Bonato, P., Deutsch, J.: Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke 40(1), 169–174 (2009)

    CrossRef  Google Scholar 

  4. Cecatto, R.B., Chadi, G.: The importance of neuronal stimulation in central nervous system plasticity and neurorehabilitation strategies. Funct. Neurol. 22(3), 137 (2007)

    Google Scholar 

  5. Deutsch, J.E., Merians, A.S., Adamovich, S., Poizner, H., Burdea, G.C.: Development and application of virtual reality technology to improve hand use and gait of individuals post-stroke. Restor. Neurol Neurosci. 22, 371–386 (2004)

    Google Scholar 

  6. Penha, P., Amado Joao, S., Casarotto, R., Amino, C., Penteado, D.: Postural assessment of girls between 7 and 10 years of age. Clinics 60(1), 9–16 (2005)

    CrossRef  Google Scholar 

  7. Baumgarter, R., Stinus, H.: Tratamiento ortésico del pie. Mason, Barcelona (1997)

    Google Scholar 

  8. Espinoza-Navarro, O., Valle, S., Berrios, G., Horta, J., Rodríguez, H., Rodríguez, M.: Prevalencia de alteraciones posturales en niños de Arica-Chile. Efectos de un programa de mejoramiento de la postura. Int. J. Morphol. 27(1), 25–30 (2009)

    CrossRef  Google Scholar 

  9. González-Agüero, A., Villarroya, M.A., Rodríguez, G., Casajús, J.A.: Masa muscular, fuerza isométrica y dinámica en las extremidades inferiores de niños y adolescentes con síndrome de Down. Biomecánica 17(2), 46–51 (2009)

    Google Scholar 

  10. Hosking, J.P., Bhat, U.S., Dubowitz, V., Edwards, R.H.: Measurements of muscle strength and performance in children with normal and diseased muscle. Arch. Dis. Child. 51(12), 957–963 (1976)

    CrossRef  Google Scholar 

  11. Eek, M.N., Beckung, E.: Walking ability is related to muscle strength in children with cerebral palsy. Gait Posture 28(3), 366–371 (2008)

    CrossRef  Google Scholar 

  12. Crompton, J., Galea, M.P., Phillips, B.: Hand-held dynamometry for muscle strength measurement in children with cerebral palsy. Dev. Med. Child Neurol. 49(2), 106–111 (2007)

    CrossRef  Google Scholar 

  13. Vrijens, J.: Muscle strength development in the pre-and post-pubescent age. In: Pediatric Work Physiology, vol. 11, pp. 152–158. Karger Publishers, Berlin (1978)

    Google Scholar 

  14. Pruna, E., et al.: VRAndroid system based on cognitive therapeutic exercises for stroke patients. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 570, pp. 657–663. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56538-5_67

    CrossRef  Google Scholar 

  15. Pruna, E., et al.: 3D virtual system trough 3 space Mocap sensors for lower limb rehabilitation. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 119–128. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_10

    CrossRef  Google Scholar 

  16. Yeh, S.-C., Chang, S.-M., Chen, S.-Y., Hwang, W.-Y., Huang, T.-C., Tsai, T.-L.: A lower limb fracture postoperative-guided interactive rehabilitation training system and its effectiveness analysis. In: 2012 IEEE 14th International Conference on e-Health Networking, Applications and Services (Healthcom), Beijing, China, pp. 149–154. IEEE, Washington (2012). ISBN: 978-1-4577-2039-0

    Google Scholar 

  17. Ponto, K., Kimmel, R., Kohlmann, J., Bartholomew, A., Radwir, R.G.: Virtual exertions: a user interface combining visual information, kinesthetics and biofeedback for virtual object manipulation. In: 2012 IEEE Symposium on 3D User Interfaces (3DUI), March 4–5 2012, Costa Mesa, CA, USA, pp. 85–88. IEEE, Washington (2012). ISBN: 978-1-4673-1204-2

    Google Scholar 

  18. Jayarathne, M., Wickramanayake, D., Afsheenjinan, A., Ranaweera, R., Weerasingha, V.: EMG based biofeedback system using a virtual reality method. In: IEEE 10th ICIIS, Peradeniya, Sri Lanka, pp. 111–116. IEEE, Washington (2015). ISBN: 978-1-5090-1741-6

    Google Scholar 

  19. Merlo, A., Campanini, I.: Technical aspect of surface electromyography for clinicians. Open Rehabil. J. 3, 100–106 (2010)

    CrossRef  Google Scholar 

  20. Gil-Gómez J.A., Lozano-Quilis, J.A., Manzano-Hernández, P., Albiol-Pérez, S., Aula-Valero, C.: SEQ: suitability evaluation questionnaire for virtual rehabilitation systems. application in a virtual rehabilitation system for balance rehabilitation. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, Italy, pp. 335–338. IEEE, Washington (2013). ISBN: 978-1-4799-0296-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddie E. Galarza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Galarza, E.E. et al. (2018). Virtual Reality System for Children Lower Limb Strengthening with the Use of Electromyographic Sensors. In: , et al. Advances in Visual Computing. ISVC 2018. Lecture Notes in Computer Science(), vol 11241. Springer, Cham. https://doi.org/10.1007/978-3-030-03801-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03801-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03800-7

  • Online ISBN: 978-3-030-03801-4

  • eBook Packages: Computer ScienceComputer Science (R0)