Skip to main content

Linear and Nonlinear Optics in Coherently Spinning Molecules

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science XIV

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 118))

Abstract

Over the last two decades, coherently spinning molecules induced by laser have been a subject of current growing interest motivated by their unique individual and collective properties. From a fundamental aspect, spinning molecules had also led to a better understanding of the mechanisms at play when molecular rotors are strongly driven by an external field. In this chapter, we describe new strategies for designing laser pulses enabling the production of spinning molecules. Two rationalized approaches are first discussed highlighting major assets and flaws. In order to implement them, simple and compact optical arrangements are proposed together with the use of a pulse shaper device that provides a greater flexibility. A more sophisticated strategy relying on a non-standard pulse shaper arrangement is also discussed. Laser pulses exhibiting a twisted linear polarization are then applied to control the rotation of linear molecules subsequently used as ultrafast phase modulators. The rotational Doppler shifts resulting from the linear and nonlinear scattering of a circularly polarized laser pulse with fast spinning molecules are investigated both experimentally and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010)

    Article  ADS  Google Scholar 

  2. S.J. Glaser, U. Boscain, T. Calarco, C.P. Koch, W. Kckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrggen, D. Sugny, F.K. Wilhelm, Eur. Phys. J. D. 69(12), 279 (2015)

    Article  ADS  Google Scholar 

  3. T. Brixner, G. Gerber, ChemPhysChem. 4(5), 418 (2003)

    Article  Google Scholar 

  4. B. Friedrich, D. Herschbach, Phys. Rev. Lett. 74(23), 4623 (1995)

    Article  ADS  Google Scholar 

  5. H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75(2), 543 (2003)

    Article  ADS  Google Scholar 

  6. H. Sakai, S. Minemoto, H. Nanjo, H. Tanji, T. Suzuki, Phys. Rev. Lett. 90(8), 083001/1 (2003)

    Google Scholar 

  7. I. Nevo, L. Holmegaard, J.H. Nielsen, J.L. Hansen, H. Stapelfeldt, F. Filsinger, G. Meijer, J. Kupper, Phys. Chem. Chem. Phys. 11(42), 9912 (2009)

    Article  Google Scholar 

  8. M. Lapert, E. Hertz, S. Guérin, D. Sugny, Phys. Rev. A 80, 051403 (2009)

    Article  ADS  Google Scholar 

  9. M.Z. Hoque, M. Lapert, E. Hertz, F. Billard, D. Sugny, B. Lavorel, O. Faucher, Phys. Rev. A 84, 013409 (2011)

    Article  ADS  Google Scholar 

  10. L. Yuan, S.W. Teitelbaum, A. Robinson, A.S. Mullin, Proc. Natl. Acad. Sci. U.S.A. 108(17), 6872 (2011)

    Article  ADS  Google Scholar 

  11. A. Korobenko, A.A. Milner, V. Milner, Phys. Rev. Lett. 112(11), 113004 (2014)

    Article  ADS  Google Scholar 

  12. O. Korech, U. Steinitz, R.J. Gordon, I.S. Averbukh, Y. Prior, Nat. Photon. 7(9), 711 (2013)

    Article  ADS  Google Scholar 

  13. U. Steinitz, Y. Prior, I.S. Averbukh, Phys. Rev. Lett. 112(1), 013004 (2014)

    Article  ADS  Google Scholar 

  14. A.A. Milner, A. Korobenko, J. Flo, I.S. Averbukh, V. Milner, Phys. Rev. Lett. 115(3), 033005 (2015)

    Article  ADS  Google Scholar 

  15. Y. Khodorkovsky, U. Steinitz, J.M. Hartmann, I.S. Averbukh, Nat. Commun. 6 (2015)

    Google Scholar 

  16. K. Mizuse, K. Kitano, H. Hasegawa, Y. Ohshima, Sci. Adv. 1(6) (2015)

    Google Scholar 

  17. M.J. Murray, H.M. Ogden, C. Toro, Q. Liu, D.A. Burns, M.H. Alexander, A.S. Mullin, J. Phys. Chem. A 119(50), 12471 (2015)

    Article  Google Scholar 

  18. K. Lin, Q. Song, X. Gong, Q. Ji, H. Pan, J. Ding, H. Zeng, J. Wu, Phys. Rev. A 92(1), 013410 (2015)

    Article  ADS  Google Scholar 

  19. A. Korobenko, V. Milner, Phys. Rev. Lett. 116(18), 183001 (2016)

    Article  ADS  Google Scholar 

  20. A.A. Milner, A. Korobenko, V. Milner, Phys. Rev. Lett. 118(24), 243201 (2017)

    Article  ADS  Google Scholar 

  21. E. Gershnabel, I.S. Averbukh, Phys. Rev. Lett. 120(8), 083204 (2018)

    Article  ADS  Google Scholar 

  22. I. Tutunnikov, E. Gershnabel, S. Gold, I.S. Averbukh, J. Phys. Chem. Lett. 9:1105–1111 (2018)

    Article  Google Scholar 

  23. J. Karczmarek, J. Wright, P. Corkum, M. Ivanov, Phys. Rev. Lett. 82(17), 3420 (1999)

    Article  ADS  Google Scholar 

  24. D.M. Villeneuve, S.A. Aseyev, P. Dietrich, M. Spanner, M.Y. Ivanov, P.B. Corkum, Phys. Rev. Lett. 85(3), 542 (2000)

    Article  ADS  Google Scholar 

  25. G. Karras, M. Ndong, E. Hertz, D. Sugny, F. Billard, B. Lavorel, O. Faucher, Phys. Rev. Lett. 114(10), 103001 (2015)

    Article  ADS  Google Scholar 

  26. S. Zhdanovich, A.A. Milner, C. Bloomquist, J. Floss, I.S. Averbukh, J.W. Hepburn, V. Milner, Phys. Rev. Lett. 107(24), 243004 (2011)

    Article  ADS  Google Scholar 

  27. C. Bloomquist, S. Zhdanovich, A.A. Milner, V. Milner, Phys. Rev. A 86(6), 063413 (2012)

    Article  ADS  Google Scholar 

  28. S. Fleischer, Y. Khodorkovsky, Y. Prior, I.S. Averbukh, New. J. Phys. 11, 105039 (2009)

    Article  ADS  Google Scholar 

  29. K. Kitano, H. Hasegawa, Y. Ohshima, Phys. Rev. Lett. 103(22), 223002 (2009)

    Article  ADS  Google Scholar 

  30. Y. Khodorkovsky, K. Kitano, H. Hasegawa, Y. Ohshima, I.S. Averbukh, Phys. Rev. A 83(2), 023423 (2011)

    Article  ADS  Google Scholar 

  31. O. Faucher, E. Prost, E. Hertz, F. Billard, B. Lavorel, A.A. Milner, V.A. Milner, J. Zyss, I.S. Averbukh, Phys. Rev. A 94(5), 051402(R) (2016)

    Article  ADS  Google Scholar 

  32. E. Prost, H. Zhang, E. Hertz, F. Billard, B. Lavorel, P. Bejot, J. Zyss, I.S. Averbukh, O. Faucher, Phys. Rev. A 96(4), 043418 (2017)

    Article  ADS  Google Scholar 

  33. E. Skantzakis, S. Chatziathanasiou, P.A. Carpeggiani, G. Sansone, A. Nayak, D. Gray, P. Tzallas, D. Charalambidis, E. Hertz, O. Faucher, Sci. Rep. 6, 39295 (2016)

    Article  ADS  Google Scholar 

  34. A.M. Weiner, Opt. Comm. 284, 3669 (2011)

    Article  ADS  Google Scholar 

  35. T. Brixner, G. Gerber, Opt. Lett. 8(26), 557 (2001)

    Article  ADS  Google Scholar 

  36. K. Misawa, Adv. Phys. X 1(4), 544 (2016)

    Google Scholar 

  37. T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, Phys. Rev. Lett. 92(20), 208301 (2004)

    Article  ADS  Google Scholar 

  38. M. Plewicki, S.M. Weber, F. Weise, A. Lindinger, Appl. Phys. B 86(2), 259 (2007)

    Article  ADS  Google Scholar 

  39. E. Hertz, F. Billard, G. Karras, P. Béjot, B. Lavorel, O. Faucher, Opt. Exp. 24(24), 27702 (2016)

    Article  ADS  Google Scholar 

  40. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)

    Google Scholar 

  41. R.N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley-Interscience, New York, 1988)

    Google Scholar 

  42. G. Herzberg, Molecular Spectra and Molecular Structure, Spectra of Diatomic Molecules, vol. 1 (Van Nostrand Reinhold Company, New York, 1950)

    Google Scholar 

  43. B.A. Garetz, J. Opt. Soc. Am. 71(5), 609 (1981)

    Article  ADS  Google Scholar 

  44. I. Bialynicki-Birula, Z. Bialynicka-Birula, Phys. Rev. Lett. 78(13), 2539 (1997)

    Article  ADS  Google Scholar 

  45. P.J. Allen, Am. J. Phys. 34(12), 1185 (1966)

    Article  ADS  Google Scholar 

  46. B.A. Garetz, S. Arnold, Opt. Commun. 31(1), 1 (1979)

    Article  ADS  Google Scholar 

  47. F. Bretenaker, A. Le Floch, Phys. Rev. Lett. 65(18), 2316 (1990)

    Article  ADS  Google Scholar 

  48. J. Courtial, D.A. Robertson, K. Dholakia, L. Allen, M.J. Padgett, Phys. Rev. Lett. 81(22), 4828 (1998)

    Article  ADS  Google Scholar 

  49. V. Renard, M. Renard, S. Guérin, Y.T. Pashayan, B. Lavorel, O. Faucher, H.R. Jauslin, Phys. Rev. Lett. 90(15), 153601 (2003)

    Article  ADS  Google Scholar 

  50. A. Rouzée, E. Hertz, B. Lavorel, O. Faucher, J. Phys. B 41, 074002 (2008)

    Article  ADS  Google Scholar 

  51. G. Maroulis, J. Chem. Phys. 118(6), 2673 (2003)

    Article  ADS  Google Scholar 

  52. G. Li, T. Zentgraf, S. Zhang, Nat. Phys. 12(8), 736 (2016)

    Article  Google Scholar 

  53. H.J. Simon, N. Bloembergen, Phys. Rev. 171(3), 1104 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Thanks are due to present and former Ph.D. students and postdoc fellowships G. Karras, M. Ndong, E. Prost, and H. Zhang for their contributions to a part of the work presented in this chapter. We would also like to thank I. S. Averbukh, P. Béjot, A. A. Milner, V. A. Milner, D. Sugny, and J. Zyss for their collaboration and valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Faucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faucher, O., Hertz, E., Lavorel, B., Billard, F. (2018). Linear and Nonlinear Optics in Coherently Spinning Molecules. In: Yamanouchi, K., Martin, P., Sentis, M., Ruxin, L., Normand, D. (eds) Progress in Ultrafast Intense Laser Science XIV. Springer Series in Chemical Physics(), vol 118. Springer, Cham. https://doi.org/10.1007/978-3-030-03786-4_3

Download citation

Publish with us

Policies and ethics