Results Obtained at the Meso-scale

  • Łukasz SadowskiEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 101)


This section focuses on the recent implementation of the unmanned ground morphoscanning vehicle (UGMV) in situ metrological system for the purpose of analyzing the level of adhesion in layered systems made of cement composites.


  1. 1.
    Żelazny, Z., Sadowski, Ł., Kupczyk, M., Czarnecki, S., Hoła, J., & Wrzecioniarz P. (2017). Platforma jezdna urządzenia do badania morfologii płaskich powierzchni zwłaszcza betonowych. Zgłoszenie nr BA-III.W.126268.3.iskow z 11.04.2017.Google Scholar
  2. 2.
    US 3876255, Bengt Erland Ilon. (1975). Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base. Published April 8, 1975.Google Scholar
  3. 3.
    Sadowski, L., & Mathia, T. G. (2015). The metrology of ground concrete surfaces morphology with 3D laser scanner. Management and Production Engineering Review, 6(2), 40–44.CrossRefGoogle Scholar
  4. 4.
    Czarnecki, S., Hoła, J., & Sadowski Ł. (2015). The use of a 3D scanner for evaluating the morphology of a sandblasted concrete surface. Key Engineering Materials 662, 193–196.CrossRefGoogle Scholar
  5. 5.
    ISO 25178. Geometrical Product Specification (GPS)—Surface texture: Areal surface texture indications (Part 1); Terms, definitions and surface texture parameters.Google Scholar
  6. 6.
    Hoła, J., Sadowski, Ł., Reiner, J., & Stach S. (2015). Usefulness of 3D surface roughness parameters for nondestructive evaluation of pull-off adhesion of concrete layers. Construction and Building Materials 84, 111–120.CrossRefGoogle Scholar
  7. 7.
    Garbacz, A., Courard, L., & Kostana, K. (2006). Characterization of concrete surface roughness and its relation to adhesion in repair systems. Materials Characterization, 56(4–5), 281–289.CrossRefGoogle Scholar
  8. 8.
    Leach, R. K. (2013). Characterisation of areal surface texture. Springer.Google Scholar
  9. 9.
    Fiebrich, M. H. (1994). Influence of the surface roughness on the adhesion between concrete and gunite mortars overlays. In Proceedings of the 2nd Bolomey Workshop on Adherence of Young and Old Concrete, Wittmann, Aedification Verlag, Unterengstringen, (pp. 107–114).Google Scholar
  10. 10.
    Flores-Colen, I., Brito, J., & Freitas, V. P. (2009). Expected render performance assessment based on impact resistance in situ determination. Construction and Building Materials, 23(9), 2997–3004.CrossRefGoogle Scholar
  11. 11.
    Flores-Colen, I., Brito, J., & Branco, F. (2009). In situ adherence evaluation of coating materials. Experimental Techniques, 23(3), 51–60.CrossRefGoogle Scholar
  12. 12.
    Ramos, N. M. M., Simões, M. L., Delgado, J. M. P. Q., & De Freitas, V. P. (2012). Reliability of the pull-off test for in situ evaluation of adhesion strength. Construction and Building Materials, 31, 86–93.CrossRefGoogle Scholar
  13. 13.
    Sadowski, Ł., Żak, A., Hoła, J. (2018). Multi-sensor evaluation of the concrete within the interlayer bond with regards to pull-off adhesion. Archives of Civil and Mechanical Engineering, 18(2), 573–582.CrossRefGoogle Scholar
  14. 14.
    Tayeh, B. A., Bakar, B. A., Johari, M. M., & Voo, Y. L. (2012). Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay. Construction and Building Materials, 36, 538–548.CrossRefGoogle Scholar
  15. 15.
    Carbonell Muñoz, M. A., Harris, D. K., Ahlborn, T. M., & Froster, D. C. (2013). Bond performance between ultrahigh-performance concrete and normal-strength concrete. Journal of Materials in Civil Engineering, 26(8), 04014031.CrossRefGoogle Scholar
  16. 16.
    Silfwerbrand, J. (1990). Improving concrete bond in repaired bridge decks. Concrete International, 12(9), 61–66.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Civil EngineeringWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations