Advertisement

Description of Measurement Methods and Parameters Useful in the Study of the Level of Adhesion of Layered Systems Made of Cement Composites

  • Łukasz SadowskiEmail author
Chapter
  • 230 Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 101)

Abstract

Momayez et al. (Cem Concr Res 35(4):748–757, 2005 [1]) compared the most commonly used methods for evaluating the level of adhesion in layered systems made of cement composites.

References

  1. 1.
    Momayez, A., Ehsani, M. R., Ramezanianpour, A. A., & Rajaie, H. (2005). Comparison of methods for evaluating bond strength between concrete substrate and repair materials. Cement and Concrete Research, 35(4), 748–757.CrossRefGoogle Scholar
  2. 2.
    Bonaldo, E., Barros, J. A., & Lourenço, P. B. (2005). Bond characterization between concrete substrate and repairing SFRC using pull-off testing. International Journal of Adhesion and Adhesives, 25(6), 463–474.CrossRefGoogle Scholar
  3. 3.
    EN 1504. Products and systems for the protection and repair of concrete structures.Google Scholar
  4. 4.
    Concrete Repair Manual. (2003). ACI International, Farmington Hills.Google Scholar
  5. 5.
    Long, A.E., & Murray, A. (1984). The pull-off partially destructive test for concrete. ACI Materials Journal, ACI SP-82 327–350.Google Scholar
  6. 6.
    Mathey, R.G., & Knab, L.I. (1991). Uniaxial tensile tested to measure the bond of in-situ concrete overlays. NISTIR 4648.Google Scholar
  7. 7.
    Stehno, G., & Mall, G. (1977). The tear-off method, a new way to determine the quality of concrete in structures on site. In RILEM International, Symposium on Testing In Situ of Concrete Structures (pp. 335–347), Budapest.Google Scholar
  8. 8.
    Bungey, J. H., & Mandandoust, R. (1992). Influencing pull-off tests in concrete. Magazine of Concrete Research, 44(158), 21–30.CrossRefGoogle Scholar
  9. 9.
    Bai, Y., Basheer, P.A.M., Cleland, D.J., & Long, A.E. (2009). State-of-the-art applications of the pull-off test in civil engineering. International Journal of Structural Engineering, 1(1), 93–103.CrossRefGoogle Scholar
  10. 10.
    Xie, H., Li, G., Xiong, G. (2002). Microstructure model of the interfacial zone between fresh and old concrete. Journal of Wuhan University of Technology—Materials Science Edition 17, 64–68. EN 1542. (2006). Products and systems for the protection and repair of concrete structures–Test methods–Measurement of bond strength by pull-off.Google Scholar
  11. 11.
    ASTM D7234. (2005). Standard test method for pull-off adhesion strength of coatings on concrete using portable pull-off adhesion testers.Google Scholar
  12. 12.
    Bissonnette, B., Vaysburd, A.M., & von Fay, K.F. (2012). Best practices for preparing concrete surfaces prior to repairs and overlays (No. MERL 12-17).Google Scholar
  13. 13.
    Beushausen, H.D. (2005). Long-term performance of bonded overlays subjected to differential shrinkage (p. 264). Ph.D. Thesis, University of Cape Town, South Africa.Google Scholar
  14. 14.
    Vaysburd, A.M., & McDonald, J.E. (1999). An evaluation of equipment and procedures for tensile bond testing of concrete repairs (p. 65). U.S. Army Corps of Engineers, Technical Report REMR-CS-61.Google Scholar
  15. 15.
    Austin, S., Robins, P., & Pan, Y. (1995). Tensile bond testing of concrete repairs. Materials and Structures, 28(179), 249–259.CrossRefGoogle Scholar
  16. 16.
    Garbacz, A., Courard, L., & Kostana, K. (2006). Characterization of concrete surface roughness and its relation to adhesion in repair systems. Materials Characterization, 56(4–5), 281–289.CrossRefGoogle Scholar
  17. 17.
    Garbacz, A., Górka, M., & Courard, L. (2005). Effect of concrete surface treatment on adhesion in repair systems. Magazine of Concrete Research, 57, 49–60.CrossRefGoogle Scholar
  18. 18.
    Ghavidel, R., Madandoust, R., & Ranjbar, M. M. (2015). Reliability of pull-off test for steel fiber reinforced self-compacting concrete. Measurement, 73, 628–639.CrossRefGoogle Scholar
  19. 19.
    Gould, R.G. (1959). The LASER, light amplification by stimulated emission of radiation. In P.A. Franken, R.H. Sands (Eds.), The ann arbor conference on optical pumping. The University of Michigan, 15 June through 18 June 1959.Google Scholar
  20. 20.
    Pernkopf, F., & O’Leary, P. (2003). Image acquisition techniques for automatic visual inspection of metallic surfaces. NDT and E International, 36(8), 609–617.CrossRefGoogle Scholar
  21. 21.
    Czarnecki, S., Hoła, J., & Sadowski, Ł. (2015). The use of a 3D scanner for evaluating the morphology of a sandblasted concrete surface. In Key Engineering Materials (Vol. 662, pp. 193–196). Trans Tech Publications.Google Scholar
  22. 22.
    de Groot, P. J. (2017). The meaning and measure of vertical resolution in optical surface topography measurement. Applied Sciences, 7(1), 54.CrossRefGoogle Scholar
  23. 23.
    Santos, P., & Júlio, E. (2010). Effect of filtering on texture assessment of concrete surfaces. ACI Materials Journal, 107(1), 31–36.Google Scholar
  24. 24.
    ISO 25178. Geometrical Product Specification (GPS)—Surface Texture: Areal. Surface texture indications (Part 1); Terms, definitions and surface texture parameters.Google Scholar
  25. 25.
    Sadowski, L., & Mathia, T. G. (2015). The metrology of ground concrete surfaces morphology with 3D laser scanner. Management and Production Engineering Review, 6(2), 40–44.CrossRefGoogle Scholar
  26. 26.
    Stout, K.J., Sullivan, P.J., Dong, W.P., Mainsah, E., Luo, N., Mathia, T., & Zahouani, H. (1993). The development of methods for the characterisation of roughness in three dimensions. In Commission of the European Communities (Ed.), ISBN 0 7044 1313.Google Scholar
  27. 27.
    Brown, C. A., Johnsen, W. A., & Hult, K. M. (1998). Scale-sensitivity, fractal analysis and simulations. International Journal of Machine Tools and Manufacture, 38(5), 633–637.CrossRefGoogle Scholar
  28. 28.
    Grzelka, M., Majchrowski, R., & Sadowski, Ł. (2011). Investigations of concrete surface roughness by means of 3D scanner. Proceedings of Electrotechnical Institute, 16.Google Scholar
  29. 29.
    ASTM C1740. (2010). Standard practice for evaluating the condition of concrete plates using the impulse-response method.Google Scholar
  30. 30.
    Ottosen, N., Ristinmmaa, M., & Davis, A. (2004). Theoretical interpretation of impulse-response tests of embedded concrete structures. Journal of Engineering Mechanics, 130(9), 1062–1071.CrossRefGoogle Scholar
  31. 31.
    Davis, A. G. (2003). The nondestructive impulse-response test in North America: 1985–2001. NDT & E International, 36(4), 185–193.CrossRefGoogle Scholar
  32. 32.
    Lin, S., Meng, D., Choi, H., Shams, S., & Azari, H. (2018). Laboratory assessment of nine methods for nondestructive evaluation of concrete bridge decks with overlays. Construction and Building Materials, 188, 966–982.CrossRefGoogle Scholar
  33. 33.
    Standard test method for measuring the P-wave speed and the thickness of concrete plates using the impact-echo method. (1998). American Society for Testing and Materials.Google Scholar
  34. 34.
    Sansalone, M., & Streett, W. (1997). Impact-echo: nondestructive evaluation of concrete and masonry. Ithaca: Bullbrier Press.Google Scholar
  35. 35.
    Qian, J., You, C., Wang, Q., Wang, H., & Jia, X. (2014). A method for assessing bond performance of cement-based repair materials. Construction and Building Materials, 68, 307–313.CrossRefGoogle Scholar
  36. 36.
    Stock, S. R. (2008). Microcomputed tomography: methodology and applications. Boca Raton: CRC Press.CrossRefGoogle Scholar
  37. 37.
    Feldkamp, L. A., Davis, L. C., & Kress, J. W. (1984). Practical cone-beam algorithm. Journal of Optical Society ofAmerica, 1(6), 612–619.CrossRefGoogle Scholar
  38. 38.
    Sneddon, I. N. (1965). The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 3(1), 47–57.CrossRefGoogle Scholar
  39. 39.
    Oliver, W. C., & Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19(1), 3–20.CrossRefGoogle Scholar
  40. 40.
    Bobko, C., & Ulm, F. J. (2008). The nano-mechanical morphology of shale. Mechanics of Materials, 40(4), 318–337.CrossRefGoogle Scholar
  41. 41.
    Constantinides, G., Ulm, F. J., & Van Vliet, K. (2003). On the use of nanoindentation for cementitious materials. Materials and Structures, 36(3), 191–196.CrossRefGoogle Scholar
  42. 42.
    Constantinides, G., Chandran, K. R., Ulm, F. J., & Van Vliet, K. J. (2006). Grid indentation analysis of composite microstructure and mechanics: Principles and validation. Materials Science and Engineering A, 430(1), 189–202.CrossRefGoogle Scholar
  43. 43.
    Luković, M., Šavija, B., Dong, H., Schlangen, E., & Ye, G. (2014). Micromechanical study of the interface properties in concrete repair systems. Journal of Advanced Concrete Technology, 12(9), 320–339.CrossRefGoogle Scholar
  44. 44.
    Zhou, J., Ye, G., & van Breugel, K. (2016). Cement hydration and microstructure in concrete repairs with cementitious repair materials. Construction and Building Materials, 112, 765–772.CrossRefGoogle Scholar
  45. 45.
    Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W., Scott, J. H. J., & Joy, D. C. (2017). Scanning electron microscopy and X-ray microanalysis. Berlin: Springer.Google Scholar
  46. 46.
    Sadowski, Ł. (2017). Multi-scale evaluation of the interphase zone between the overlay and concrete substrate: methods and descriptors. Applied Sciences, 7(9), 893.CrossRefGoogle Scholar
  47. 47.
    Hoła, J., Sadowski, Ł. (2012). Testing interlayer pull-off adhesion in concrete floors by means of nondestructive acoustic methods. In 18th World Conference on Non Destructive Testing, Durban.Google Scholar
  48. 48.
    Sadowski, Ł. (2013). Analysys of the effect of concrete base roughness on the pull-off adhesion of the topping layer (in Polish). Informatyka, Automatyka Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ). 1, 39–42.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Civil EngineeringWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations