Imaging in Paediatric Oncology: Pitfalls, Acceptable and Unacceptable Imaging

  • Joy BarberEmail author
  • Kieran McHugh
Part of the Pediatric Oncology book series (PEDIATRICO)


This chapter sets out to illustrate potential errors made in the imaging of a child with a malignancy. Pitfalls range from selecting an incorrect modality or using suboptimal protocols to incorrect interpretation of abnormalities. A common mistake with children’s tumours is performing a non-contrast CT as a preliminary evaluation. Due to a paucity of mediastinal and retroperitoneal fat in young patients, non-contrast CT of the chest and abdomen is seldom if ever useful and should be avoided in the setting of a potential new tumour. If CT, rather than MRI, is the optimal test, then only post-intravenous contrast-enhanced CT images should be performed. Multiphase scanning is not necessary bearing in mind that all superficial, accessible or abdominal mass lesions should be evaluated with ultrasound initially, including a Doppler vascular assessment. Most paediatric tumours are large at presentation and easy to identify—the correct differential diagnosis is entirely dependent on the age of the child.


Tumour Ultrasound CT MRI Nuclear medicine Intravascular contrast 


  1. 1.
    National Cancer Intelligence Network. National registry of childhood tumours progress report, 2012. Oxford: NRCT; 2013.Google Scholar
  2. 2.
    Armstrong GT, Stovall M, Robison LL. Long-term effects of radiation exposure among adult survivors of childhood cancer: results from the childhood cancer survivor study. Radiat Res. 2010;174(6):840–50.CrossRefGoogle Scholar
  3. 3.
    Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.CrossRefGoogle Scholar
  4. 4.
    Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br Med J. 2013;346:f2360.CrossRefGoogle Scholar
  5. 5.
    Andronikou S. Letting go of what we believe about radiation and the risk of cancer in children. Pediatr Radiol. 2017;47(1):113–5.CrossRefGoogle Scholar
  6. 6.
    Brenner DJ, Elliston CD, Hall EJ, Berdon WE. Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol. 2001;176(2):289–96.CrossRefGoogle Scholar
  7. 7.
    Schmidt MH, Marshall J, Downie J, Hadskis MR. Pediatric magnetic resonance research and the minimal-risk standard. IRB. 2011;33(5):1.PubMedGoogle Scholar
  8. 8.
    Adin ME, Kleinberg L, Vaidya D, Zan E, Mirbagheri S, Yousem DM. Hyperintense dentate nuclei on T1-weighted MRI: relation to repeat gadolinium administration. Am J Neuroradiol. 2015;36(10):1859–65.CrossRefGoogle Scholar
  9. 9.
    Jacob J, Deganello A, Sellars ME, Hadzic N, Sidhu PS. Contrast enhanced ultrasound (CEUS) characterization of grey-scale sonographic indeterminate focal liver lesions in pediatric practice. Ultraschall Med. 2013;34(6):529–40.CrossRefGoogle Scholar
  10. 10.
    Nelson TR. Practical strategies to reduce pediatric CT radiation dose. J Am Coll Radiol. 2014;11(3):292–9.CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Federico SM, Brady SL, Pappo A, Wu J, Mao S, McPherson VJ, Young A, Furman WL, Kaufman R, Kaste S. The role of chest computed tomography (CT) as a surveillance tool in children with high‐risk neuroblastoma. Pediatr Blood Cancer. 2015;62(6):976–81.CrossRefGoogle Scholar
  13. 13.
    McHugh K, Roebuck DJ. Pediatric oncology surveillance imaging: two recommendations. Abandon CT scanning, and randomize to imaging or solely clinical follow‐up. Pediatr Blood Cancer. 2014;61(1):3–6.CrossRefGoogle Scholar
  14. 14.
    Voss S, Chen L, Constine LS, et al. Surveillance CT and detection of relapse in intermediate-and advanced-stage pediatric Hodgkins lymphoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:2635–40.Google Scholar
  15. 15.
    Callahan MJ, Poznauskis L, Zurakowski D, Taylor GA. Nonionic iodinated intravenous contrast material–related reactions: incidence in large urban children’s hospital—retrospective analysis of data in 12 494 patients. Radiology. 2009;250(3):674–81.CrossRefGoogle Scholar
  16. 16.
    Dillman JR, Strouse PJ, Ellis JH, Cohan RH, Jan SC. Incidence and severity of acute allergic-like reactions to iv nonionic iodinated contrast material in children. Am J Roentgenol. 2007;188(6):1643–7.CrossRefGoogle Scholar
  17. 17.
    McHugh K, Disini L. Commentary: for the children’s sake, avoid non-contrast CT. Cancer Imaging. 2011;11:16–8.CrossRefGoogle Scholar
  18. 18.
    Scialpi M, Schiavone R, D’ANDREA AL, Palumbo I, Magli M, Gravante S, Falcone G, De Filippi C, Palumbo B. Single-phase whole-body 64-MDCT split-bolus protocol for pediatric oncology: diagnostic efficacy and dose radiation. Anticancer Res. 2015;35(5):3041–8.PubMedGoogle Scholar
  19. 19.
    Tomà P. Monophasic computed tomography for pediatric oncology using a split-bolus protocol: an unnecessary complication? Pediatr Radiol. 2017;47(3):366.CrossRefGoogle Scholar
  20. 20.
    Weller A, Barber JL, Olsen OE. Gadolinium and nephrogenic systemic fibrosis: an update. Pediatr Nephrol. 2014;29(10):1927–37.CrossRefGoogle Scholar
  21. 21.
    Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834–41.CrossRefGoogle Scholar
  22. 22.
    Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR. Macrocyclic and other non–group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol. 2016;51(7):447–53.CrossRefGoogle Scholar
  23. 23.
    Solanki KK, Bomanji JB, Moyes J, et al. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;13:51321.Google Scholar
  24. 24.
    Weiss AR, Lyden ER, Anderson JR, Hawkins DS, Spunt SL, Walterhouse DO, Wolden SL, Parham DM, Rodeberg DA, Kao SC, Womer RB. Histologic and clinical characteristics can guide staging evaluations for children and adolescents with rhabdomyosarcoma: a report from the Children’s Oncology Group Soft Tissue Sarcoma Committee. J Clin Oncol. 2013;31(26):3226–32.CrossRefGoogle Scholar
  25. 25.
    Gauguet JM, Pace‐Emerson T, Grant FD, Shusterman S, DuBois SG, Frazier AL, Voss SD. Evaluation of the utility of 99mTc‐MDP bone scintigraphy versus MIBG scintigraphy and cross‐sectional imaging for staging patients with neuroblastoma. Pediatr Blood Cancer 2017;64(11).Google Scholar
  26. 26.
    Lee Chong A, Grant RM, Ahmed BA, Thomas KE, Connolly BL, Greenberg M. Imaging in pediatric patients: time to think again about surveillance. Pediatr Blood Cancer. 2010;55(3):407–13.CrossRefGoogle Scholar
  27. 27.
    Gruden JF, Ouanounou S, Tigges S, Norris SD, Klausner TS. Incremental benefit of maximum-intensity-projection images on observer detection of small pulmonary nodules revealed by multidetector CT. AJR Am J Roentgenol. 2002;179(1):149–57.CrossRefGoogle Scholar
  28. 28.
    Silva CT, Amaral JG, Moineddin R, Doda W, Babyn PS. CT characteristics of lung nodules present at diagnosis of extrapulmonary malignancy in children. Am J Roentgenol. 2010;194(3):772–8.CrossRefGoogle Scholar
  29. 29.
    McCarville MB, Lederman HM, Santana VM, Daw NC, Shochat SJ, Li CS, Kaufman RA. Distinguishing benign from malignant pulmonary nodules with helical chest CT in children with malignant solid tumors. Radiology. 2006;239(2):514–20.CrossRefGoogle Scholar
  30. 30.
    Sams CM, Voss SD. Imaging of the pediatric thymus and thymic disorders. In: Pediatric chest imaging. Berlin, Heidelberg: Springer; 2014. p. 327–48.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.St. George’s HospitalLondonUK
  2. 2.Great Ormond Street Hospital for ChildrenLondonUK

Personalised recommendations