Advertisement

Evaluating Perception Systems for Autonomous Vehicles Using Quality Temporal Logic

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11237)

Abstract

For reliable situation awareness in autonomous vehicle applications, we need to develop robust and reliable image processing and machine learning algorithms. Currently, there is no general framework for reasoning about the performance of perception systems. This paper introduces Timed Quality Temporal Logic (TQTL) as a formal language for monitoring and testing the performance of object detection and situation awareness algorithms for autonomous vehicle applications. We demonstrate that it is possible to describe interesting properties as TQTL formulas and detect cases where the properties are violated.

Keywords

Temporal logic Monitoring Autonomous vehicles Perception Image processing Machine Learning 

Notes

Acknowledgements

This work was partially supported by the NSF I/UCRC Center for Embedded Systems and by NSF grants 1350420, 1361926 and 1446730.

References

  1. 1.
  2. 2.
    IEEE Connected Vehicles: Google reports self-driving car disengagements. http://sites.ieee.org/connected-vehicles/2015/12/15/google-reports-self-driving-car-disengagements
  3. 3.
  4. 4.
    Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19835-9_21CrossRefzbMATHGoogle Scholar
  6. 6.
    Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D., Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification - Introductory and Advanced Topics. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75632-5_5CrossRefGoogle Scholar
  7. 7.
    Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the skorokhod metric. In: 27th International Conference on Computer Aided Verification (CAV), pp. 234–250 (2015)CrossRefGoogle Scholar
  8. 8.
    Dokhanchi, A., Hoxha, B., Tuncali, C.E., Fainekos, G.: An efficient algorithm for monitoring practical TPTL specifications. In: The ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE), pp. 184–193 (2016)Google Scholar
  9. 9.
    Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Systematic testing of convolutional neural networks for autonomous driving. In: ICML Workshop on Reliable Machine Learning in the Wild (RMLW) (2017)Google Scholar
  10. 10.
    Fainekos, G., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32, 1229–1235 (2013)Google Scholar
  12. 12.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org
  13. 13.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30206-3_12CrossRefzbMATHGoogle Scholar
  14. 14.
    Nguyen, L.V., Kapinski, J., Jin, X., Deshmukh, J.V., Johnson, T.T.: Hyperproperties of real-valued signals. In: The ACM-IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE), pp. 104–113 (2017)Google Scholar
  15. 15.
    Tuncali, C.E., Fainekos, G., Ito, H., Kapinski, J.: Simulation-based adversarial test generation for autonomous vehicles with machine learning components. In: IEEE Intelligent Vehicles Symposium (IV) (2018)Google Scholar
  16. 16.
    Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: Squeezedet: Unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving (2016)Google Scholar
  17. 17.
    Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).  https://doi.org/10.1109/CVPR.2017.376

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Arizona State UniversityTempeUSA
  2. 2.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations