Advertisement

Verifying and Validating Autonomous Systems: Towards an Integrated Approach

  • Angelo Ferrando
  • Louise A.  Dennis
  • Davide Ancona
  • Michael Fisher
  • Viviana MascardiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11237)

Abstract

When applying formal verification to a system that interacts with the real world we must use a model of the environment. This model represents an abstraction of the actual environment, but is necessarily incomplete and hence presents an issue for system verification. If the actual environment matches the model, then the verification is correct; however, if the environment falls outside the abstraction captured by the model, then we cannot guarantee that the system is well-behaved. A solution to this problem consists in exploiting the model of the environment for statically verifying the system’s behaviour and, if the verification succeeds, using it also for validating the model against the real environment via runtime verification. The paper discusses this approach and demonstrates its feasibility by presenting its implementation on top of a framework integrating the Agent Java PathFinder model checker. Trace expressions are used to model the environment for both static formal verification and runtime verification.

Keywords

Runtime verification Model checking Autonomous systems Trace expressions MCAPL 

References

  1. 1.
    Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF abductive proof-procedure. In: Proceedings of the 9th Congress of the Italian Association for Artificial Intelligence, AI*IA 2005, pp. 135–147 (2005)Google Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000)CrossRefGoogle Scholar
  3. 3.
    Ancona, D., Barbieri, M., Mascardi, V.: Constrained global types for dynamic checking of protocol conformance in multi-agent systems. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC 2013, pp. 1377–1379 (2013)Google Scholar
  4. 4.
    Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Global protocols as first class entities for self-adaptive agents. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, pp. 1019–1029 (2015)Google Scholar
  5. 5.
    Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Runtime verification of fail-uncontrolled and ambient intelligence systems: a uniform approach. Intelligenza Artificiale 9(2), 131–148 (2015)CrossRefGoogle Scholar
  6. 6.
    Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-monitoring MASs from multiparty global session types in Jason. In: Baldoni, M., Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol. 7784, pp. 76–95. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37890-4_5CrossRefGoogle Scholar
  7. 7.
    Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Parametric trace expressions for runtime verification of Java-like programs. In: Proceedings of the 19th Workshop on Formal Techniques for Java-like Programs, FTFJP 2017 (2017)Google Scholar
  8. 8.
    Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Coping with bad agent interaction protocols when monitoring partially observable multiagent systems. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018. LNCS (LNAI), vol. 10978, pp. 59–71. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94580-4_5CrossRefGoogle Scholar
  9. 9.
    Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Managing Bad AIPs with RIVERtools. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018. LNCS (LNAI), vol. 10978, pp. 296–300. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94580-4_24CrossRefGoogle Scholar
  10. 10.
    Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions and linear temporal logic for runtime verification. In: Theory and Practice of Formal Methods: Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday (2016)CrossRefGoogle Scholar
  11. 11.
    Ancona, D., Ferrando, A., Mascardi, V.: Parametric runtime verification of multiagent systems. In: Proceedings of the 2017 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2017, pp. 1457–1459. ACM (2017)Google Scholar
  12. 12.
    Ancona, D., Franceschini, L., Delzanno, G., Leotta, M., Ribaudo, M., Ricca, F.: Towards runtime monitoring of Node.js and its application to the Internet of Things. In: Proceedings of the 1st workshop on Architectures, Languages and Paradigms for IoT, ALP4IoT@iFM. EPTCS, vol. 264, pp. 27–42 (2017)CrossRefGoogle Scholar
  13. 13.
    Benerecetti, M., Giunchiglia, F., Serafini, L.: Model checking multiagent systems. J. Log. Comput. 8(3), 401–423 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentSpeak Using Jason. Wiley (2007)Google Scholar
  15. 15.
    Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent programs by model checking. Auton. Agents Multi-Agent Syst. 12(2), 239–256 (2006)CrossRefGoogle Scholar
  16. 16.
    Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press, Cambridge (1987)Google Scholar
  17. 17.
    Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Automata for regular expressions with shuffle. Inf. Comput. 259(2), 162–173 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the reactive event calculus. In: Proceedings of the 21st International Joint Conference on Artifical Intelligence, IJCAI 2009, pp. 91–96 (2009)Google Scholar
  19. 19.
    Dennis, L.A., Fisher, M., Lincoln, N., Lisitsa, A., Veres, S.M.: Declarative abstractions for agent based hybrid control systems. In: Proceedings 8th International Workshop on Declarative Agent Languages and Technologies (DALT), pp. 96–111 (2010)CrossRefGoogle Scholar
  20. 20.
    Dennis, L.A.: Gwendolen semantics: 2017. Technical report ULCS-17-001, University of Liverpool, Department of Computer Science (2017)Google Scholar
  21. 21.
    Dennis, L.A.: The MCAPL framework including the agent infrastructure layer and agent Java Pathfinder. J. Open Source Softw. 3(24) (2018). https://doi.org/10.21105/joss.00617CrossRefGoogle Scholar
  22. 22.
    Dennis, L.A., et al.: Agent-based autonomous systems and abstraction engines: theory meets practice. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS (LNAI), vol. 9716, pp. 75–86. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40379-3_8CrossRefGoogle Scholar
  23. 23.
    Dennis, L.A., Fisher, M., Lincoln, N.K., Lisitsa, A., Veres, S.M.: Practical verification of decision-making in agent-based autonomous systems. Autom. Softw. Eng., 1–55 (2014)Google Scholar
  24. 24.
    Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)CrossRefGoogle Scholar
  25. 25.
    Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime verification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 172–189. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67531-2_11CrossRefGoogle Scholar
  26. 26.
    Desai, A., Gupta, V., Jackson, E.K., Qadeer, S., Rajamani, S.K., Zufferey, D.: P: safe asynchronous event-driven programming. In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation 2013, PLDI 2013, pp. 321–332. ACM (2013)Google Scholar
  27. 27.
    Dhaussy, P., Roger, J., Boniol, F.: Reducing state explosion with context modeling for model-checking. In: Proceedings of the 13th IEEE International Symposium on High-Assurance Systems Engineering, HASE 2011, pp. 130–137 (2011)Google Scholar
  28. 28.
    Ferrando, A.: The early bird catches the worm: first verify, then monitor! (2016). presented at Vortex’16. Downloadable from http://trace2buchi.altervista.org/wp-content/uploads/2017/10/paper.pdf
  29. 29.
    Ferrando, A.: RIVERtools: an IDE for RuntIme VERification of MASs, and beyond. In: PRIMA Demo Track 2017. CEUR, Vol. 2056 (2017)Google Scholar
  30. 30.
    Ferrando, A., Ancona, D., Mascardi, V.: Monitoring patients with hypoglycemia using self-adaptive protocol-driven agents: a case study. In: Proceedings of Engineering Multi-Agent Systems - 4th International Workshop, EMAS, pp. 39–58 (2016)CrossRefGoogle Scholar
  31. 31.
    Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Recognising assumption violations in autonomous systems verification. In: Proceedings of the 2018 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018 (2018)Google Scholar
  32. 32.
    Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 278–292 (1996)Google Scholar
  33. 33.
    Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal verification of autonomous vehicle platooning. Sci. Comput. Program. 148, 88–106 (2017). Special issue on Automated Verification of Critical Systems (AVoCS 2015)CrossRefGoogle Scholar
  34. 34.
    Lomuscio, A., Raimondi, F.: mcmas: a model checker for multi-agent systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450–454. Springer, Heidelberg (2006).  https://doi.org/10.1007/11691372_31CrossRefGoogle Scholar
  35. 35.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30206-3_12CrossRefzbMATHGoogle Scholar
  36. 36.
    van der Merwe, H., van der Merwe, B., Visser, W.: Verifying android applications using Java PathFinder. ACM SIGSOFT Softw. Eng. Notes 37(6), 1–5 (2012)CrossRefGoogle Scholar
  37. 37.
    Nguyen, L.V., Schilling, C., Bogomolov, S., Johnson, T.T.: Runtime verification for hybrid analysis tools. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 281–286. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23820-3_19CrossRefGoogle Scholar
  38. 38.
    Penix, J., Visser, W., Engstrom, E., Larson, A., Weininger, N.: Verification of time partitioning in the DEOS scheduler kernel. In: Proceedings of the 22nd International Conference on Software Engineering, pp. 488–497 (2000)Google Scholar
  39. 39.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE Computer Society, Washington, DC (1977)Google Scholar
  40. 40.
    Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Platforms and Applications, Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15, pp. 149–174. Springer, Boston (2005).  https://doi.org/10.1007/0-387-26350-0_6CrossRefGoogle Scholar
  41. 41.
    Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by model checking via ordered binary decision diagrams. J. Appl. Logic 5(2), 235–251 (2007)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Rao, A.S., Georgeff, M.: BDI agents: from theory to practice. In: Proceedings of the 1st International Conference Multi-Agent Systems (ICMAS), San Francisco, USA, pp. 312–319, June 1995Google Scholar
  43. 43.
    Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In: Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR&R), pp. 473–484 (1991)Google Scholar
  44. 44.
    Rao, A.: Agentspeak(L): BDI agents speak out in a logical computable language. In: Agents Breaking Away: Proceedings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW), pp. 42–55 (1996)Google Scholar
  45. 45.
    Sistla, A.P., Žefran, M., Feng, Y.: Runtime monitoring of stochastic cyber-physical systems with hybrid state. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 276–293. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29860-8_21CrossRefGoogle Scholar
  46. 46.
    Tkachuk, O., Dwyer, M.B., Pasareanu, C.S.: Automated environment generation for software model checking. In: Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE 2003), pp. 116–129 (2003)Google Scholar
  47. 47.
    Torroni, P., et al.: Modelling interactions via commitments and expectations. In: Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models. IGI Global (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Angelo Ferrando
    • 1
  • Louise A.  Dennis
    • 2
  • Davide Ancona
    • 1
  • Michael Fisher
    • 2
  • Viviana Mascardi
    • 1
    Email author
  1. 1.Università di GenovaGenovaItaly
  2. 2.Liverpool UniversityLiverpoolUK

Personalised recommendations