Adams R, Murray F (1974) Minerals: kill or cure?. Larchmont Books, NY
Google Scholar
Andersson K, Olofsson A, Nielsen EH, Svehag SE, Lundgren E (2002) Only amyloidogenic intermediates of transthyretin induce apoptosis. Biochem Biophys Res Commun 294:309–314
CAS
PubMed
CrossRef
Google Scholar
Araya M, Gutiérrez R, Arredondo M (2014) CCS mRNA transcripts and serum CCS protein as copper marker in adults suffering inflammatory processes. Biometals. https://doi.org/10.1007/s10534-014-9737-4
CAS
PubMed
CrossRef
Google Scholar
Araya M, Núñez H, Pavez L, Arredondo M, Méndez M, Cisternas F, Pizarro F, Sierralta W, Uauy R, González M (2012) Administration of high doses of copper to capuchin monkeys does not cause liver damage but induces transcriptional activation of hepatic proliferative responses. J Nutr 142(2):233–237
CAS
PubMed
CrossRef
Google Scholar
AREDS (Age-Related Eye Disease Study Research Group) (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119:1417–1436
CrossRef
Google Scholar
Armstrong JS, Leong W, Lees GJ (2001) Comparative effects of metal chelating agents on the neuronal cytotoxicity induced by copper (Cu2+), iron (Fe3+) and zinc in the hippocampus. Brain Res 8992:51–62
CrossRef
Google Scholar
Arnold S (2012) Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. Adv Exp Med Biol 748:305–339
CAS
PubMed
CrossRef
Google Scholar
Arredondo M, Weisstaub G, medina M, Suazo M, Guzmán M, Araya M. (2014) Assessing chaperone for Zn, Cu-superoxide dismutase as an indicator of copper deficiency in malnourished children. J Trace Elem Med Biol 28:23–27
CAS
PubMed
CrossRef
Google Scholar
Astiz M, Hurtado de Catalfo GE, de Alaniz MJ, Marra CA (2009) Involvement of lipids in dimethoate-induced inhibition of testosterone biosynthesis in rat interstitial cells. Lipids 44(8):703–718
CAS
PubMed
CrossRef
Google Scholar
Babu U, Failla ML (1990) Respiratory burst and candidacidal activity of peritoneal macrophages are impaired in copper-deficient rats. J Nutr 120(12):1692–1699
CAS
PubMed
CrossRef
Google Scholar
Bala S, Failla ML (1992) Copper deficiency reversibly impairs DNA synthesis in activated T lymphocytes by limiting interleukin 2 activity.
Proc Natl Acad Sci USA 89(15):6794–6797
CAS
CrossRef
Google Scholar
Barceloux D (1999) Copper. Clin Toxicol 37(2):217–230
CAS
Google Scholar
Bartee MY, Lutsenko S (2007) Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level. Biometals 20(3–4):627–637
CAS
PubMed
CrossRef
Google Scholar
Beshgetoor D, Hambidge M (1998) Clinical conditions altering copper metabolism in humans. Am J Clin Nutr 67(5 Suppl):1017S–1021S
CAS
PubMed
CrossRef
Google Scholar
Bingham MJ, Ong TJ, Summer KH, Middleton RB, McArdle HJ (1998) Physiologic function of the Wilson disease gene product, ATP7B. Am J Clin Nutr 67(5 Suppl):982S–987S
CAS
PubMed
CrossRef
Google Scholar
Botta G, Turn CS, Quintyne NJ, Kirchman PA (2011 Oct) Increased iron supplied through Fet3p results in replicative life span extension of Saccharomyces cerevisiae under conditions requiring respiratory metabolism. Exp Gerontol 46(10):827–832
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Brewer GJ, Fink JK, Hedera P (1999) Diagnosis and treatment of Wilson’s disease. Semin Neurol 19(3):261–270
CAS
PubMed
CrossRef
Google Scholar
Brewer GJ (2010) Risk of copper and iron toxicity during aging in humans. Chem Res Toxicol 23:319–326
CAS
PubMed
CrossRef
Google Scholar
Buckley WT (1996) Application of compartmental modeling to determination of trace element requirements in humans. J Nutr 126:2312S–2319S
CAS
PubMed
CrossRef
Google Scholar
Cartwright GE, Wintrobe MM (1964) Copper metabolism in normal subjects. Am J Clin Nutr 14:224–232
CAS
PubMed
CrossRef
Google Scholar
Cerpa W, Varela-Nallar L, Reyes AE, Minniti AN, Inestrosa NC (2005) Is there a role for copper in neurodegenerative disease? Mol Aspects Med 26:405–420
CAS
PubMed
CrossRef
Google Scholar
Chew EY (2013) Nutrition effects on ocular diseases in the aging eye. Invest Ophthalmol Vis Sci 54(14):ORSF42–47
CAS
CrossRef
Google Scholar
Crouch PJ, Hung LW, Adlard PA, Cortes M, Lal V, Filiz G, Perez KA, Nurjono M, Caragounis A, Du T et al (2009) Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci USA 106:381–386
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Dameron CT, Harrison MD (1998) Mechanisms for protection against copper toxicity. Am J Clin Nutr 67(5 Suppl):1091S–1097S
CAS
PubMed
CrossRef
Google Scholar
De Magalhães JP, Curado J, Church GM (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25(7):875–881
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
De Romaña DL, Olivares M, Uauy R, Araya M (2011) Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol 25(1):3–13
PubMed
CrossRef
CAS
Google Scholar
Delmi M, Rapin CH, Bengoa JM, Delmas PD, Vasey H, Bonjour JP (1990) Dietary supplementation in elderly patients with fractured neck of the femur. Lancet 335:1013–1016
CAS
PubMed
CrossRef
Google Scholar
Dijkstra M, Vonk RJ, Kuipers F (1996) How does copper get into bile? new insights into the mechanism(s) of hepatobiliary copper transport. J Hepatol 24:109–120
CAS
PubMed
CrossRef
Google Scholar
Ding WQ, Lind SE (2009) Metal ionophores—an emerging class of anticancer drugs. IUBMB Life 61(11):1013–1018
CAS
PubMed
CrossRef
Google Scholar
Enesco HE, Wolanskyj A, Sawada M (1989) Effect of copper on lifespan and lipid peroxidation in rotifers. Age 12(1):19–23
CAS
CrossRef
Google Scholar
Ferrer I (2009) Early involvement of the cerebral cortex in Parkinson’s disease convergence of multiple metabolic defects. Prog Neurobiol 88:89–103
CAS
PubMed
CrossRef
Google Scholar
Friedman DS, O’Colmain BJ, Muñoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J, Eye Diseases Prevalence Research Group (2004) Prevalence of age related macular degeneration in the United States. Arch Ophthalmol 122:564–572
Google Scholar
Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163
CAS
PubMed
CrossRef
Google Scholar
Giampaolo V, Luigina F, Conforti A, Milanino R (1982) Copper and inflammation. In: Sorenson JR (ed) Inflammatory diseases and copper: the metabolic and therapeutic roles of copper and other essential metalloelements in humans. Humana Press, Clifton, New Jersey
CrossRef
Google Scholar
González M, Reyes-Jara A, Suazo M, Jo WJ, Vulpe C (2008) Expression of copper-related genes in response to copper load. Am J Clin Nutr 88(3):830S–834S
PubMed
CrossRef
Google Scholar
Gorell JM, Peterson EL, Rybicki BA, Johnson CC (2004) Multiple risk factors for Parkinson’s disease. J Neurol Sci 217:169–174
PubMed
CrossRef
Google Scholar
Gulec S, Collins JF (2014) Molecular mediators governing iron-copper interactions. Annu Rev Nutr 34:95–116
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Harada H, Kurauchi M, Hayashi R, Eki T (2007) Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents. Ecotoxicol Environ Saf 66:378–383
CAS
PubMed
CrossRef
Google Scholar
Harris ZL, Gitlin JD (1996) Genetic and molecular basis for copper toxicity. Am J Clin Nutr 63:836S–841S
CAS
PubMed
CrossRef
Google Scholar
Heresi G, Castillo-Duran C, Munoz C, Arevalo M, Schlesinger L (1985) Phagocytosis and immunoglobulin levels in hypocupremic infants. Nutr Res 5:1327–1334
CrossRef
Google Scholar
Hooijmans CR, Kiliaan AJ (2008) Fatty acids, lipid metabolism and Alzheimer pathology. Eur J Pharmacol 585:176–196
CAS
PubMed
CrossRef
Google Scholar
Huang J, Gan Q, Han L, et al (2008) SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoSONE 3(3):e1710
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Hung LW, Barnham KJ (2012) Modulating metals as a therapeutic strategy for Alzheimer’s disease. Future Med Chem 4(8):955–969
CAS
PubMed
CrossRef
Google Scholar
Johnson WT, Newman SM Jr (2003) Copper deficiency: a potential model for determining the role of mitochondria in cardiac aging. J Am Aging Assoc 26(1–2):19–28
CAS
PubMed
PubMed Central
Google Scholar
Jung Y, Surh Y (2001) Oxidative DNA damage and cytotoxicity induced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radic Biol Med 30(12):1407–1417
CAS
PubMed
CrossRef
Google Scholar
Kardos J, Kovács I, Hajós F, Kálmán M, Simonyi M (1989) Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neurosci Lett 103:139–144
CAS
PubMed
CrossRef
Google Scholar
Kirchman PA, Botta G (2007) Copper supplementation increases yeast life span under conditions requiring respiratory metabolism. Mech Ageing Dev 128:187–195
CAS
PubMed
CrossRef
Google Scholar
Klang IM, Schilling B, Sorensen DJ, Sahu AK, Kapahi P, Andersen JK, Swoboda P, Killilea DW4 Gibson BW, Lithgow GJ (2014) Iron promotes protein insolubility and aging in C. elegans. Aging (Albany NY) 6(11):975–991
Google Scholar
Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308
CAS
PubMed
CrossRef
Google Scholar
Kong GK, Miles LA, Crespi GA, Morton CJ, Ng HL, Barnham KJ, McKinstry WJ, Cappai R, Parker MW (2008) Copper binding to the Alzheimer’s disease amyloid precursor protein. Eur Biophys J 37:269–279
CAS
PubMed
CrossRef
Google Scholar
Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valesnsin D, Valensin G (2009) Copper, iron, and zinc homesotasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 253:2665–2685
CAS
CrossRef
Google Scholar
Krajacic P, Qian Y, Hahn P, Dentchev T, Lukinova N, Dunaief JL (2006) Retinal localization and copper-dependent relocalization of the Wilson and Menkes disease proteins. Inves Ophthalmol Vis Sci 47:3129–3134
CrossRef
Google Scholar
Kremer JM, Bigaouette J (1996) Nutrient intake of patients with rheumatoid arthritis is deficient in pyridoxine, zinc, copper, and magnesium. J Rheumatol 23(6):990–994
CAS
PubMed
Google Scholar
La Fontaine S, Mercer JF (2007) Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 463(2):149–167
PubMed
CrossRef
CAS
Google Scholar
Leyendecker M, Korsten P, Reinehr R, Speckmann B, Schmoll D, Scherbaum WA, Bornstein SR, Barthel A, Klotz LO (2011) Ceruloplasmin expression in rat liver cells is attenuated by insulin: role of FoxO transcription factors. Horm Metab Res 43(4):268–274
CAS
PubMed
CrossRef
Google Scholar
Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63(5):797S–811S
CAS
PubMed
Google Scholar
Linder MC (1991) The biochemistry of copper. Plenum, New York, NY
CrossRef
Google Scholar
Liu G, Huang W, Moir RD, Vanderburg CR, Lai B, Peng Z, Tanzi RE, Rogers JT, Huang X (2006) Metal exposure and Alzheimer’s pathogenesis. J Struct Biol 155:45–51
CAS
PubMed
CrossRef
Google Scholar
Lukasewycz OA, Prohaska JR (1990) The immune response in copper deficiency. Ann N Y Acad Sci 587:147–159
CAS
PubMed
CrossRef
Google Scholar
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87(3):1011–1046
CAS
PubMed
CrossRef
Google Scholar
Lutsenko S (2016) Copper trafficking to the secretory pathway. Metallomics 8(9):840–852
CAS
PubMed
CrossRef
Google Scholar
Malavolta M, Piacenza F, Basso A, Giacconi R, Costarelli L, Mocchegiani E (2015) Serum copper to zinc ratio: relationship with aging and health status. Mech Ageing Dev 151:93–100
CAS
PubMed
CrossRef
Google Scholar
Massie HR, Aiello VR (1984) Excessive intake of copper: influence on longevity and cadmium accumulation in mice. Mech Ageing Dev 26(2–3):195–203
CAS
PubMed
CrossRef
Google Scholar
Massie HR, Williams TR, Aiello VR (1984) Influence of dietary copper on the survival of Drosophila. Gerontology 30(2):73–78
CAS
PubMed
CrossRef
Google Scholar
Matos I, Gouveia A, Almeida H (2012) Copper ability to induce premature senescence in human fibroblast. Age 34:783–794
CAS
PubMed
CrossRef
Google Scholar
Matos L, Gouveia A, Almeida H (2014) ER stress response in human cellular models of Scenscence. J Gerontolog A Biol Sci Med Sci 2015:924–935. https://doi.org/10.1093/gerona/glu129
CrossRef
CAS
Google Scholar
Matos L, Gouveia A, Almeida H (2017) Resveratrol attenuates copper-induced senescence by improving cellular proteostasis. Oxidative Med Cell Longevity. 2017, Article ID 3793817:12 pp
Google Scholar
Méplan C (2011) Trace elements and ageing, a genomic perspective using selenium as an example. J Trace Elem Med Biol 25(Suppl 1):S11–S16
PubMed
CrossRef
CAS
Google Scholar
Mercer J, Abbrosini L, Horton S, Gazeas S, Grimes A (1999) Animal models of Menkes disease. Adv Exp Biol Med 448:97–108
CAS
CrossRef
Google Scholar
Mercer J (1998) Menkes syndrome and animal models. Am J Clin Nutr 67:1022S–1028S
CAS
PubMed
CrossRef
Google Scholar
Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Ostan R, Cevenini E, Gonos ES, Monti D (2014) Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review. Mech Ageing Dev 137:29–49
CrossRef
CAS
Google Scholar
Mocchegiani E, Costarelli L, Giacconi R, Piacenza F, Basso A, Malavolta M (2012) Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments. Ageing Res Rev 11(2):297–319 (Apr 2012)
CAS
PubMed
CrossRef
Google Scholar
Moreira PI, Nunomura A, Nakamura M, Takeda A, Shenk JC, Aliev G, Smith MA, Perry G (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44:1493–1505
CAS
PubMed
CrossRef
Google Scholar
Müller T, Müller W, Feichtinger H (1998) Idiopathic copper toxicosis. Am J Clin Nutr 67:1082S–1086S
PubMed
CrossRef
Google Scholar
Murthy M, Ram JL (2015) Invertebrates as model organisms for research on aging biology. Invertebr Reprod Dev 59(sup1):1–4
PubMed
CrossRef
Google Scholar
National Academy of Sciences (NAS) (1989) Recommended dietary allowances, 10th edn. Washington, DC, pp 224–230
Google Scholar
Neumann PZ, Sass-Kortsak A (1967) State of copper in human serum: evidence for amino acid-bound fraction. J Clin Invest 46:646–658
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Olivares M, Méndez MA, Astudillo PA, Pizarro F (2008) Present situation of biomarkers for copper status. Am J Clin Nutr 88(3):859S–862S
CAS
PubMed
CrossRef
Google Scholar
Opazo CM, Greenough MA, Bush AI (2014) Copper: from neurotransmission to neuroproteostasis. Front Aging Neurosci 3(6):143. https://doi.org/10.3389/fnagi.2014.00143
CAS
CrossRef
Google Scholar
Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y (2007) Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiology 43(5):571–579
CAS
CrossRef
Google Scholar
Pandit AN, Bhave SA (2002) Copper metabolic defects and liver disease. J Gastroenterol Hepatol 17:S403–S407
CrossRef
Google Scholar
Park YM, Febbraio M, Silverstein RL (2009) CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest 119(1):136–145
Google Scholar
Percival SS (1998) Copper and immunity. Am J Clin Nutr 67(5 Suppl):1064S–1068S
CAS
PubMed
CrossRef
Google Scholar
Peters C, Muñoz B, Sepúlveda FJ, Urrutia J, Quiroz M, Luza S, De Ferrari GV, Aguayo LG, Opazo C (2011) Biphasic effects of copper on neurotransmission in rat hippocampal neurons. J Neurochem 119(1):78–88
CAS
PubMed
CrossRef
Google Scholar
Petris MJ, Mercer JFB, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO 15:6084–6095
CAS
CrossRef
Google Scholar
Popper H, Irmin SG, Chandra N, Madhavan TV (1979) Cytoplasmic copper and its toxic effects studies in indian childhood cirrhosis. Lancet 1(8128):1205–1208
CAS
PubMed
CrossRef
Google Scholar
Pratt WB, Omdahl JL, Sorenson JRJ (1985) Lack of effects of copper gluconate supplementation. Am J Clin Nutr 42:681–682
CAS
PubMed
CrossRef
Google Scholar
Robert A, Liu Y, Nguyen M, Meunier B (2015) Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer’s disease. Acc Chem Res 19; 48(5):1332–1339
CAS
PubMed
CrossRef
Google Scholar
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62
CAS
PubMed
CrossRef
Google Scholar
Saari JT, Bode AM, Dahlen GM (1995) Defects of copper deficiency in rats are modified by dietary treatments that affect glycation. J Nutr 125(12):2925–2934
CAS
PubMed
Google Scholar
Saltman PD, Strause LG (1993) The role of trace minerals in osteoporosis. J Am Coll Nutr 12:384–389
CAS
PubMed
CrossRef
Google Scholar
Sass-Kortsak A (1965) Copper metabolism. Adv Clin Chem 8:1–67
CAS
PubMed
Google Scholar
Scheinberg IH, Sternlieb I (1996) Wilson disease and idiopathic copper toxicosis. Am J Clin Nutr 63(5):842S–845S
CAS
PubMed
CrossRef
Google Scholar
Schlief ML, Craig AM, Gitlin JD (2005) NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J Neurosci 25:239–246
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Servos J, Hamann A, Grimm C, Osiewacz HD (2012) A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development. PLoS ONE 7(11):e49292
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 1768:1976–1990
CAS
PubMed
CrossRef
Google Scholar
Snyder RD, Friedman MB (1998) Enhancement of cytotoxicity and clastogenicity of l-DOPA and dopamine by manganese and copper. Mutat Res 405:1–8
CAS
PubMed
CrossRef
Google Scholar
Sorenson JR (1988) Anti-inflammatory, analgesic, and antiulcer activities of copper complexes suggest their use in a physiologic approach to treatment of arthritic diseases. Basic Life Sci 49:591–594
CAS
PubMed
Google Scholar
Stuerenburg HJ (2000) CSF copper concentrations, blood-brain barrier function and coeruloplasmin synthesis during the treatment of Wilson’s disease. J Neural Transm 107:321–329
CAS
PubMed
CrossRef
Google Scholar
Suazo M, Olivares F, Mendez MA, Pulgar R, Prohaska JR, Arredondo M, Pizarro F, Olivares M, Araya M, González M (2008) CCS and SOD1 mRNA are reduced after copper supplementation in peripheral mononuclear cells of individuals with high serum ceruloplasmin concentration. J Nutr Biochem 19(4):269–274
CAS
PubMed
CrossRef
Google Scholar
Suttle NF, Angus KW (1976) Experimental copper deficiency in the calf. J Comp Pathol 86(4):595–608
CAS
PubMed
CrossRef
Google Scholar
Turnlund JR, Keyes WR, Anderson HL, Acord LL (1989) Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr 49(5):870–878
CAS
PubMed
CrossRef
Google Scholar
Turnlund JR (1998) Human whole-body copper metabolism. Am J Clin Nutr 67:960S–964S
CAS
PubMed
CrossRef
Google Scholar
Uauy R, Maass A, Araya M (2008) Estimating risk from copper excess in human populations. Am J Clin Nutr 88(3):867S–871S
CAS
PubMed
CrossRef
Google Scholar
Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67(5 Suppl):952S–959S
CAS
PubMed
CrossRef
Google Scholar
Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103:17–37
CAS
PubMed
Google Scholar
Velez S, Nair NG, Reddy P (2008) Transition metal ion binding studies of carnosine and histidine: biologically relevant antioxidants. Colloids Surf B Biointerfaces 66:291–294
CAS
PubMed
CrossRef
Google Scholar
Waggoner D, Bartnikas T, Gitlin J (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230
CAS
PubMed
CrossRef
Google Scholar
Wataha JC, Lockwood PE, Schedle A, Noda M, Bouillaguet S (2002) Ag, Cu, Hg and Ni ions alter the metabolism of human monocytes during extended low-dose exposures. J Oral Rehabil 29(2):133–139
CAS
PubMed
CrossRef
Google Scholar
Weiss KC, Linder MC (1985) Copper transport in rats involving a new plasma protein. A J Physiol 249:E77–E88
CAS
Google Scholar
White C, Lee J, Kambe T, Fritsche K, Petris MJ (2009) A role for the ATP7Acopper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284:33949–33956
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
WHO (1973) Report of an Expert Committee. Trace elements in human nutrition. Tech Rep Ser No 532, WHO, Geneva
Google Scholar
WHO/FAO/IAEA (1996) Copper. In: Trace elements in human nutrition and health. World Health Organization, Geneva, pp 123–143
Google Scholar
Yamaguchi Y, Heiny ME, Suzuki M, Gitlin J (1996) Biochemical characterization and intracellular localization of the Menkes disease protein. Proc Natl Acad Sci 93:14030–14035
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Yamashita S, Ogawa K, Ikei T, Udono M, Fujiki T, Katakura Y (2012) SIRT1 prevents replicative senescence of normal human umbilical cord fibroblast through potentiating the transcription of human telomerase reverse transcriptase gene. Biochem Biophys Res Comm 417(1):630–634
CAS
PubMed
CrossRef
Google Scholar
Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, Stadtman ER (1996) Again-of-function of an amyotrophic lateral sclerosis-associated Cu-Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci USA 93:5709–5714
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W, Kang YJ (2015) Role of copper in regression of cardiac hypertrophy. Pharmacol Ther 148:66–84
CAS
PubMed
CrossRef
Google Scholar
Ziyatdinova GK, Voloshin AV, Gilmutdinov AK, Budnikov HC, Ganeev TS (2006) Application of constant-current coulometry for estimation of plasma total antioxidant capacity and its relationship with transition metal contents. J Pharm Biomed Anal 40(4):958–963
CAS
PubMed
CrossRef
Google Scholar