Skip to main content

Customizable Social Wooden Pavilions: A Workflow for the Energy, Emergy and Perception Optimization in Perugia’s Parks

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 24))

Abstract

The research aims to generate a workflow, which subdivides the complex problem of optimizing the buildings energy consumption in smaller problems that can easier be solved. The workflow starts from the definition of the insertion context of the building, which influences it principally regarding the climate, the sun exposure and the shadings. The successive step is choosing one or more optimal wall stratigraphies which show the best combination of different parameters, like cost, transmittance, thickness and emergy. The last step concerns the optimization of the shape as a function of the previously defined stratigraphies and of the energy consumptions for lighting, heating, cooling and electrical equipment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aravena A (2007) Alejandro Aravena: progettare e costruire. Milano, Electa

    Google Scholar 

  • Benis K, Reinhart C, Ferrão P (2017) Building-Integrated Agriculture (BIA) in urban contexts: testing a simulation-based decision support workflow

    Google Scholar 

  • Cruz T, Boddington A (1999) Architecture of the borderlands. Wiley, London

    Google Scholar 

  • Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings

    Google Scholar 

  • Elbeltagi E, Wefki H, Abdrabou S, Dawood M, Ramzy A (2017) Visualized strategy for predicting buildings energy consumption during early design stage using parametric analysis. J Build Eng 13:127–136

    Article  Google Scholar 

  • Franzese PP (2009) 6—anni di Ecodinamica. In Raccolta di articoli in CD-ROM. Supplemento a Biologi Italiani, A cura di Pier Paolo Franzese. Available online http://www.onb.it/ecodinamica.jsp

  • Franzese PP, Scopa A, Riccio A, Barone G (2003a) Studio di sistemi complessi: la prospettiva ecodinamica in chimica-fisica ambientale. Biologi Italiani 11:39–45

    Google Scholar 

  • Franzese PP, Dumontet S, Scopa A (2003b) L’analisi emergetica: una metodica termodinamica per la valutazione della sostenibilità ambientale. In: Biologia Clinica, Ambiente, Sicurezza e Qualità: obiettivi di una professione che evolve. Proceedings of the XVI international conference of the association of Italian biologists, Abano Terme, Italy, Dumontet S, Landi E, Pastoni F

    Google Scholar 

  • Franzese PP, Riccio A, Scopa A (2003c) Valutazione della sostenibilità ambientale: verso un approccio ecodinamico. Biologi Italiani 7:58–60

    Google Scholar 

  • Franzese PP, Comar V, Russo GF, Ulgiati S (2005) Analisi dei sistemi ecologici: approccio modellistico-ecodinamico. Biologi Italiani 6:41–48

    Google Scholar 

  • Gonzalez M, Navarro J (2006) Assessment of the decrease of CO2 emissions in the construction field through the selection of materials. Build Environ 41:902–909

    Article  Google Scholar 

  • Keena N, Raugei M, Aly Etman M, Ruan D, Dyson A (2018) Clark’s Crow: a design plugin to support emergy analysis decision making towards sustainable urban ecologies, Ecological Modelling. vol. 367(C), Elsevier, 42–57

    Google Scholar 

  • Kuhn T (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Negroponte N (1970) Soft architecture machines. The MIT Press, Cambridge

    Google Scholar 

  • OECD (2003) Environmental sustainable building—challenges and policies Paris, France, p 194

    Google Scholar 

  • Odum HT (1988) Self organization, transformity and information. Science 242:1132–1139

    Article  Google Scholar 

  • Odum HT (1996) Environmental accounting: emergy and environmental decision making. Wiley, New York, p 370

    Google Scholar 

  • Pak MH, Smith A, Gill GN (2013) Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. Procedia—Soc Behav Sci 216:948–959

    Google Scholar 

  • Prezzario Regione Umbria (2017)

    Google Scholar 

  • Prigogine I (1947) Study of thermodynamics of Irreversible Processes. Wiley, New York

    Google Scholar 

  • Pulselli RM, Simoncini E, Pulselli FM, Bastianoni S (2007) Emergy analysis ofbuilding manufacturing, maintenance and use: em-building indices to evaluate housing sustainability. Energy Build 39(5):620–628

    Article  Google Scholar 

  • Pulselli RM, Simoncini E, Ridolfi R, Bastianoni S (2008) Specific emergy of cement and concrete: an energy-based appraisal of building materials and their transport. Ecol Indic 8(5):647–656

    Article  Google Scholar 

  • Pulselli RM, Simoncini E, Marchettini N (2009) Energy and emergy basedcost–benefit evaluation of building envelopes relative to geographical location and climate. Build Environ 44(5):920–928

    Article  Google Scholar 

  • Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. Genetic algorithms and their applications: proceedings of the first international conference on genetic algorithms. pp 93–100

    Google Scholar 

  • Sposito C, Scalisi F (2017) Sustainable architecture: the eco-efficiency earth construction. Eur J Sustain Dev 6:246–254

    Google Scholar 

  • Thormark C (2006) The effect of material choice on the total energy need and recycling potential of a building. Build Environ 41:1019–1026

    Article  Google Scholar 

  • von Bertalanffy L (1968) General system theory. George Braziller, New York, p 295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Seccaroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seccaroni, M., Pelliccia, G. (2019). Customizable Social Wooden Pavilions: A Workflow for the Energy, Emergy and Perception Optimization in Perugia’s Parks. In: Bianconi, F., Filippucci, M. (eds) Digital Wood Design. Lecture Notes in Civil Engineering, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-03676-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03676-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03675-1

  • Online ISBN: 978-3-030-03676-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics