Skip to main content

Computational Mechanical Modelling of Wood—From Microstructural Characteristics Over Wood-Based Products to Advanced Timber Structures

Part of the Lecture Notes in Civil Engineering book series (LNCE,volume 24)

Abstract

Wood as structural bearing material is often encountered with skepticism and, therefore, it is not used as extensively as its very good material properties would suggest. Beside building physics and construction reasons, the main cause of this skepticism is its quite complex material behavior, which is the reason that design concepts for wood have so far not achieved a desirable prediction accuracy. Thus, for the prediction of effective mechanical properties of wood, advanced computational tools are required, which are able to predict as well as consider multidimensional strength information at different scales of observation. Within this chapter, three computational methods are presented: an extended finite element approach able to describe strong strain-softening and, thus, reproduce brittle failure modes accurately; a numerical limit analysis approach, exclusively describing ductile failure; and an elastic limit approach based on continuum micromechanics. Based on illustrative results, the performance of these methods is shown and discussed. Furthermore, a finite-element-based design procedure for an elastically-deformed wooden structure is outlined, showing how advanced mechanical information of the base material could be exploited within digital design of complex timber structures in future. Finally, geometric design concepts applicable within digital wood design are discussed, giving insights into possible future developments.

Keywords

  • Computational mechanics
  • Mechanical modelling
  • Structural analysis
  • Wooden microstructure
  • Wood-based products

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aicher S, Gustafsson PJ, Haller P, Petersson H (2002) Fracture mechanics models for strength analysis of timber beams with a hole or a notch. A report of Rilem TC-133

    Google Scholar 

  • Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program Ser B 95:249–277

    MathSciNet  MATH  Google Scholar 

  • Bader T, Hofstetter K, Hellmich C, Eberhardsteiner J (2010) Poromechanical scale transitions of failure stresses in wood: from the lignin to the spruce level. ZAMM - Zeitschrift für angewandte Mathematik und Mechanik 90:750–767

    MathSciNet  MATH  Google Scholar 

  • Bader T, Hofstetter K, Hellmich C, Eberhardsteiner J (2011) The poroelastic role of water in cell walls of the hierarchical composite softwood. Acta Mech 217:75–100

    MATH  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45(5):601–620

    MATH  Google Scholar 

  • Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6:147–157

    Google Scholar 

  • Blum Ch, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv (CSUR) 35(3):268–308

    Google Scholar 

  • Böhm H (2004) A short introduction to continuum micro-mechanics. In: Böhm H (ed) Mechanics of microstructured materials. CISM Lecture notes 464. Springer, Wien/New York, pp 1–40

    Google Scholar 

  • Chilton J, Tang G (2017) Timber gridshells: architecture, structure and craft. Routledge, New York

    Google Scholar 

  • Denton SR, Morley CT (2000) Limit analysis and strain-softening structures. Int J Mech Sci 42:503–522

    MATH  Google Scholar 

  • Drucker DC, Greenberg HJ, Prager W (1951) The safety factor of an elastic-plastic body in plane strain. J Appl Mech 18:371–378

    MathSciNet  MATH  Google Scholar 

  • Drucker DC, Prager W, Greenberg HJ (1952) Extended limit design theorems for continuous media. Q Appl Math 9:381–389

    MathSciNet  MATH  Google Scholar 

  • Eberhardsteiner J (2002) Mechanisches Verhalten von Fichtenholz: Experimentelle Bestimmung der biaxialen Festigkeit- seigenschaften, Mechanical Behavior of Spruce Wood: Experimental Determination of Biaxial Strength (Properties), in German. Springer, Wien, New York

    Google Scholar 

  • Eberhardsteiner J, Hofstetter K, Hellmich Ch (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A/Solids 24:1030–1053

    Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A 241:376–396

    MathSciNet  MATH  Google Scholar 

  • Foley Ch (2003) Modeling the effects of knots in structural timber. ISSN: 0349-4969

    Google Scholar 

  • Füssl J, Lackner R, Eberhardsteiner J, Mang HA (2008) Failure modes and effective strength of two-phase materials determined by means of numerical limit analysis. Acta Mech 195(1–4):185–202

    MATH  Google Scholar 

  • Füssl J, Kandler G, Eberhardsteiner J (2016) Application of stochastic finite element approaches to wood-based products. Arch Appl Mech 86(1–2):89–110. https://doi.org/10.1007/s00419-015-1112-6

  • Füssl J, Li M, Lukacevic M, Eberhardsteiner J, Martin CM (2017) Comparison of unit cell-based computational methods for predicting the strength of wood. Eng Struct 141:427–443. https://doi.org/10.1016/j.engstruct.2017.03.005

    CrossRef  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning, 1989. Addison-Wesley, Reading

    Google Scholar 

  • Gravouil A, Moes N, Belytschko T (2002) Non-planar 3d crack growth by the extended finite element and level sets-part ii: level set update. Int J Numer Meth Eng 53(11):2569–2586

    MATH  Google Scholar 

  • Guindos P (2011) Three-dimensional finite element models to simulate the behavior of wood with presence of knots, applying the flow-grain analogy and validation with close range photogrammetry. PhD thesis, University of Santiago de Compostela, Department of Agroforestry Engineering

    Google Scholar 

  • Hochreiner G, Füssl J, Eberhardsteiner J (2014a) Cross-laminated timber plates subjected to concentrated loading: experimental identification of failure mechanisms. Strain 50(1):68–81

    Google Scholar 

  • Hochreiner G, Füssl J, Serrano E, Eberhardsteiner J (2014b) Influence of wooden board strength class on the performance of cross-laminated timber plates investigated by means of full-field deformation measurements. Strain 50(2):161–173

    Google Scholar 

  • Hofstetter K, Hellmich Ch, Eberhardsteiner J (2006) Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach. Holzforschung 61:343–351

    Google Scholar 

  • Hofstetter K, Hellmich Ch, Eberhardsteiner J, Mang HA (2008) Micromechanical estimates for elastic limit states in wood, revealing nanostructural failure mechanisms. Mech Adv Mater Struct 15:474–484

    Google Scholar 

  • Jiang C, Tang C, Vaxman A, Wonka P, Pottmann H (2015) Polyhedral patterns. ACM Trans Graph 34(6):#172, 1–12

    Google Scholar 

  • Johansson CJ (2003) Grading of timber with respect to mechanical properties. In: Timber engineering, pp 23–43. ISBN: 0-470-84469-8

    Google Scholar 

  • Kandler G, Füssl J (2017) A probabilistic approach for the linear behaviour of glued laminated timber. Eng Struct 148:673–685

    Google Scholar 

  • Kandler G, Füssl J, Eberhardsteiner J (2015a) Stochastic finite element approaches for wood-based products: theoretical framework and review of methods. Wood Sci Technol 49(5):1055–1097

    Google Scholar 

  • Kandler G, Füssl J, Serrano E, Eberhardsteiner J (2015b) Effective stiffness prediction of GLT beams based on stiffness distributions of individual lamellas. Wood Sci Technol 49(6):1101–1121

    Google Scholar 

  • Kandler G, Lukacevic M, Füssl J (2016) An algorithm for the geometric reconstruction of knots within timber boards based on fibre angle measurements. Constr Build Mater 124:945–960

    Google Scholar 

  • Kandler G, Lukacevic M, Füssl J (2018) Experimental study on glued laminated timber beams with well-known knot morphology. Eur J Wood Wood Prod 1–18

    Google Scholar 

  • Krieg O, Schwinn T, Menges A, Li JM, Knippers J, Schmitt A, Schwieger V (2014) Biomimetic lightweight timber plate shells: computational integration of robotic fabrication, architectural geometry and structural design. In: Block P et al (eds) Advances in architectural geometry 2014. Springer, pp 109–125

    Google Scholar 

  • Landelius J (1989) Finit area metoden. en bra metod f ̈or ber ̈akning av uppfl ̈akningsbrott? Rep No TVSM 5043:66 (in Swedish)

    Google Scholar 

  • Laws N (1977) The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material. J Elast 7(1):91–97

    MathSciNet  MATH  Google Scholar 

  • Li M, Füssl J, Lukacevic M, Eberhardsteiner J, Martin CM (2018a) Strength predictions of clear wood at multiple scales using numerical limit analysis approaches. Comput Struct 196:200–216

    Google Scholar 

  • Li M, Füssl J, Lukacevic M, Eberhardsteiner J, Martin CM (2018b) A numerical upper bound formulation with sensibly-arranged velocity discontinuities and orthotropic material strength behaviour. J Theor Appl Mech 56

    Google Scholar 

  • Liu Y, Pottmann H, Wallner J, Yang YL, Wang W (2006) Geometric modelling with conical meshes and developable surfaces. ACM Trans Graph 25(3):681–689

    Google Scholar 

  • Lubliner J (1990) Plasticity theory, Revised Pdf Edition 2006. University of California Berkeley, Previously published by Pearson Education, Inc.

    Google Scholar 

  • Lukacevic M, Füssl J (2014) Numerical simulation tool for wooden boards with a physically based approach to identify structural failure. Eur J Wood Wood Prod 72(4):497–508. https://doi.org/10.1007/s00107-014-0803-y

    CrossRef  Google Scholar 

  • Lukacevic M, Füssl J (2016) Application of a multisurface discrete crack model for clear wood taking into account the inherent microstructural characteristics of wood cells. Holzforschung 70(9):845–853

    Google Scholar 

  • Lukacevic M, Füssl J, Griessner M, Eberhardsteiner J (2014) Performance assessment of a numerical simulation tool for wooden boards with knots by means of full-field deformation measurements. Strain 50(4):301–317. https://doi.org/10.1111/str.12093

    CrossRef  Google Scholar 

  • Lukacevic M, Füssl J, Lampert R (2015a) Failure mechanisms of clear wood identified at wood cell level by an approach based on the extended finite element method. Eng Fract Mech 144:158–175. https://doi.org/10.1016/j.engfracmech.2015.06.066

    CrossRef  Google Scholar 

  • Lukacevic M, Füssl J, Eberhardsteiner J (2015b) Discussion of common and new indicating properties for the strength grading of wooden boards. Wood Sci Technol 49(3):551–576

    Google Scholar 

  • Lukacevic M, Lederer W, Füssl J (2017) A microstructure-based multisurface failure criterion for the description of brittle and ductile failure mechanisms of clear-wood. Eng Fract Mech 176:83–99

    Google Scholar 

  • Mackenzie-Helnwein P, Eberhardsteiner J, Mang HA (2003) A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details. Comput Mech 31:204–218

    MATH  Google Scholar 

  • Makrodimopoulos A, Martin CM (2005a) Limit analysis using large-scale socp optimization. In: Proceedings of 13th national conference of UK association for computational mechanics in engineering, Sheffield, pp 21–24

    Google Scholar 

  • Makrodimopoulos A, Martin CM (2005b) A novel formulation of upper bound limit analysis as a second-order cone programming problem. In: Proceedings of 8th international conference on computational plasticity, Barcelona, pp 1083–1086

    Google Scholar 

  • Makrodimopoulos A, Martin CM (2007) Upper bound limit analysis using simplex strain elements and second-order cone programming. Int J Numer Anal Meth Geomech 31(6):835–865

    MATH  Google Scholar 

  • Masuda M (1988) Theoretical consideration on fracture criteria of wood—proposal of finite small area theory. In: Proceedings of the 1988 international conference on timber engineering, Seattle, vol 2, pp 584–595

    Google Scholar 

  • Melenk J, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1):289–314

    MathSciNet  MATH  Google Scholar 

  • Moes N, Gravouil A, Belytschko T (2002) Non-planar 3d crack growth by the extended finite element and level sets-part i: mechanical model. Int J Numer Meth Eng 53(11):2549–2568

    MATH  Google Scholar 

  • MOSEK ApS (2006) The MOSEK optimization tools version 4.0 (revision 35). User’s Manual and Reference, available from http://www.mosek.com

  • Naicu D, Harris R, Williams C (2014) Timber gridshells: design methods and their application to a temporary pavilion. In: World conference on timber engineering, Vienna

    Google Scholar 

  • Nyström J (2003) Automatic measurement of fiber orientation in softwoods by using the tracheid effect. Comput Electron Agric 41(1):91–99

    Google Scholar 

  • Olsson A, Oscarsson J (2014) Three dimensional fibre orientation models for wood based on laser scanning utilizing the tracheid effect. In: WCTE 2014, World conference on timber engineering, Quebec City, Canada, August 10–14

    Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    MathSciNet  MATH  Google Scholar 

  • Pech S (2017) Metamodel assisted optimisation of glued laminated timber systems by reordering laminations using metaheuristic algorithms. Master thesis, TU, Wien

    Google Scholar 

  • Pech S, Kandler G, Lukacevic M, Füssl J (2018) Metamodel assisted optimization of glued laminated timber systems by reordering wooden lamellas using metaheuristic algorithms. Comput Struct (submitted)

    Google Scholar 

  • Persson K (2000) Micromechanical modelling of wood and fibre properties, vol 1013. Division of Structural Mechanics, Lund Institute of Technology. ISBN: 91-7874-094-0

    Google Scholar 

  • Pirazzi C, Weinand Y (2006) Geodesic lines on free-form surfaces—optimized grids for timber rib shells. In: World conference on timber engineering, vol 7

    Google Scholar 

  • Pottmann H, Asperl A, Hofer M, Kilian A (2007) Architectural geometry. Bentley Institute Press

    Google Scholar 

  • Pottmann H, Huang Q, Deng B, Schiftner A, Kilian M, Guibas L, Wallner J (2010) Geodesic patterns. ACM Trans Graph 29(4):#43, 1–10

    Google Scholar 

  • Pottmann H, Eigensatz M, Vaxman A, Wallner J (2015) Architectural geometry. Comput Graph 47:145–164

    Google Scholar 

  • Puck A, Schuermann H (1998) Failure analysis of frp laminates by means of physically based phenomenological models. Compos Sci Technol 58(7):1045–1067

    Google Scholar 

  • Schiftner A, Höbinger M, Wallner J, Pottmann H (2009) Packing circles and spheres on surfaces. ACM Trans Graph 28(5):#139, 1–8

    Google Scholar 

  • Schling E, Barthel R (2017) Experimental studies on the construction of doubly curved structures. Detail Struct 01:52–56

    Google Scholar 

  • Schling E, Kilian M, Wang H, Schikore D, Pottmann H (2018) Design and construction of curved support structures with repetitive parameters. In: Advances in architectural geometry (submitted)

    Google Scholar 

  • Schmidt J, Kaliske M (2007) Simulation of cracks in wood using a coupled material model for interface elements. Holzforschung 61(4):382–389

    Google Scholar 

  • Schmidt J, Kaliske M (2009) Models for numerical failure analysis of wooden structures. Eng Struct 31(2):571–579

    Google Scholar 

  • Serrano E, Gustafsson J (2006) Fracture mechanics in timber engineering—strength analyses of components and joints. Mater Struct 40:87–96

    Google Scholar 

  • Sjödin J, Serrano E (2008) A numerical study of methods to predict the capacity of multiple steel-timber dowel joints. Holz als Roh- und Werkstoff 66(6):447–454

    Google Scholar 

  • Sjödin J, Serrano E, Enquist B (2008) An experimental and numerical study of the effect of friction in single dowel joints. Holz als Roh- und Werkstoff 66(5):363–372

    Google Scholar 

  • Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67(6):868–893

    MATH  Google Scholar 

  • Steffen A, Johansson CJ, Wormuth EW (1997) Study of the relationship between flatwise and edge-wise modull of elasticity of sawn timber as a means to improve mechanical strength grading technology. Holz als Roh- und Werkstoff 55(2–4):245–253

    Google Scholar 

  • Stitic A, Weinand Y (2015) Timber folded plate structures—topological and structural considerations. Int J Space Struct 30:169–176

    Google Scholar 

  • Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media. Lecture notes in physics 272. Springer, Wien, New York, pp 193–278

    Google Scholar 

  • Suquet P (1997) Continuum micromechanics. Springer, Wien, New York

    MATH  Google Scholar 

  • Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5(1):5880

    Google Scholar 

  • Zaoui A (2002) Continuum micromechanics: survey. ASCE J Eng Mech 128(8):808–816

    Google Scholar 

  • Zimmermann T, Sell J, Eckstein D (1994) Rasterelektronenmikroskopische Untersuchungen an Zugbruchflächen von Fichtenholz. Holz als Roh- und Werkstoff 52(4):223–229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Füssl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Füssl, J., Lukacevic, M., Pillwein, S., Pottmann, H. (2019). Computational Mechanical Modelling of Wood—From Microstructural Characteristics Over Wood-Based Products to Advanced Timber Structures. In: Bianconi, F., Filippucci, M. (eds) Digital Wood Design. Lecture Notes in Civil Engineering, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-03676-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03676-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03675-1

  • Online ISBN: 978-3-030-03676-8

  • eBook Packages: EngineeringEngineering (R0)