Advertisement

Visualizing Knowledge Evolution of Emerging Information Technologies in Chronic Diseases Research

  • Dongxiao Gu
  • Kang Li
  • Xiaoyu WangEmail author
  • Changyong Liang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10983)

Abstract

To provide knowledge support and reference for scholars in technologies and data-driven chronic disease research, investigated knowledge base, research hotspots, development status and concluded future research directions in chronic disease research driven by emerging technologies. We conducted a bibliometric analysis based on 4820 literature data collected from the Web of Science core collection during 2000–2017. The time distribution, space distribution, literature co-citation were analyzed and visualized, the dynamic process of research hotspots in this research filed was revealed, and future development trends were discussed.

Keywords

Emerging technologies Chronic diseases Bibliometric analysis Technologies and data-driven 

Notes

Acknowledgements

The dataset collection and analysis of this research were partially supported by the National Natural Science Foundation of China (NSFC) under grant Nos. 71331002, 71301040, 71771075, 71771077, 71573071, and 71601061.

References

  1. 1.
    National Health and Family Planning Commission of PRC: China Health and Family Planning Statistical Yearbook. Peking Union Medical College Press, Beijing (2015). (in Chinese)Google Scholar
  2. 2.
    Lv, L.: The enlightenment of the international theoretical model of chronic disease management to China. Chin. J. Heal. Inform. Manag. 12(5), 529–534 (2015).  https://doi.org/10.3969/j.issn.1672-5166.2015.05.018. (in Chinese)CrossRefGoogle Scholar
  3. 3.
    Lv, Y., Li, Z., et al.: Visualization analysis on research status, hotspots and frontiers of self-management of chronic disease. J. Nurs. (China) 20(7B), 1–5 (2013).  https://doi.org/10.3969/j.issn.1008-9969.2013.14.001. (in Chinese)CrossRefGoogle Scholar
  4. 4.
    Lu, F.: Literature metrology analysis of chronic disease management research papers. Chin. Nurs. Res. 29(7C), 2676–2678 (2015).  https://doi.org/10.3969/j.issn.1009-6493.2015.21.054. (in Chinese)CrossRefGoogle Scholar
  5. 5.
    Taifang, L., Aihua, Z., et al.: Visualization analysis under the international perspective about the chronic disease research of the elderly base on the web of science database. Mod. Prev. Med. 44(3), 520–524 (2017). (in Chinese)Google Scholar
  6. 6.
    Rajpal, D.K., Kumar, V., Agarwal, P.: Scientific literature mining for drug discovery: a case study on obesity. Drug Dev. Res. 72(2), 201–208 (2011).  https://doi.org/10.1002/ddr.20416CrossRefGoogle Scholar
  7. 7.
    Kong, W., Mou, X., Hu, X.: Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data. BMC Bioinform. 12(5), S7 (2011).  https://doi.org/10.1186/1471-2105-12-s5-s7CrossRefGoogle Scholar
  8. 8.
    Khan, A., Choudhury, N., Uddin, S., Hossain, L., Baur, L.A.: Longitudinal trends in global obesity research and collaboration: a review using bibliometric metadata. Obes. Rev. 17(4), 377–385 (2016).  https://doi.org/10.1111/obr.12372CrossRefGoogle Scholar
  9. 9.
    Lledó, L.D., et al.: A comparative analysis of 2D and 3D tasks for virtual reality therapies based on robotic-assisted neurorehabilitation for post-stroke patients. Front. Aging Neurosci. 8, 205 (2016).  https://doi.org/10.3389/fnagi.2016.00205CrossRefGoogle Scholar
  10. 10.
    Yang, G., Chen, S., Ma, A., Lu, J., Wang, T.: Identification of the difference in the pathogenesis in heart failure arising from different etiologies using a microarray dataset. Clinics 72(10), 600–608 (2017).  https://doi.org/10.6061/clinics/2017(10)03CrossRefGoogle Scholar
  11. 11.
    Gu, D., Li, J., Li, X., Liang, C.: Visualizing the knowledge structure and evolution of big data research in healthcare informatics. Int. J. Med. Inform. 98, 22–32 (2017).  https://doi.org/10.1016/j.ijmedinf.2016.11.006CrossRefGoogle Scholar
  12. 12.
    Chen, C.: Searching for intellectual turning points: progressive knowledge domain visualization. Proc. Natl. Acad. Sci. 101(suppl. 1), 5303–5310 (2004).  https://doi.org/10.1073/pnas.0307513100MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, C.: CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J. Assoc. Inf. Sci. Technol. 57(3), 359–377 (2006).  https://doi.org/10.1002/asi.20317CrossRefGoogle Scholar
  14. 14.
    Small, H.: Co-citation in the scientific literature: a new measure of the relationship between two documents. J. Assoc. Inf. Sci. Technol. 24(4), 265–269 (1973).  https://doi.org/10.1002/asi.4630240406CrossRefGoogle Scholar
  15. 15.
    Xie, P.: Study of international anticancer research trends via co-word and document co-citation visualization analysis. Scientometrics 105(1), 611–622 (2015).  https://doi.org/10.1007/s11192-015-1689-0CrossRefGoogle Scholar
  16. 16.
    Lyu, P., Zhang, L.: Scientific knowledge networks in LIS (II): case study on the structure, characteristics and evolution of co-citation networks. J. China Soc. Sci. Tech. Inf. 33(4), 349–357 (2014).  https://doi.org/10.3772/j.issn.10000135.2014.04.002. (in Chinese)CrossRefGoogle Scholar
  17. 17.
    Lu, Y., Li, Z., Arthur, D.: Mapping publication status and exploring hotspots in a research field: chronic disease self-management. J. Adv. Nurs. 70(8), 1837–1844 (2014).  https://doi.org/10.1111/jan.12344CrossRefGoogle Scholar
  18. 18.
    Zhang, Q., Xu, X.: On discovering the structure map of knowledge management research abroad—integration of a bibliometric analysis and visualization analysis. J. Ind. Eng./Eng. Manag. 22(4), 30–35 (2008).  https://doi.org/10.3969/j.issn.1004-6062.2008. (in Chinese)CrossRefGoogle Scholar
  19. 19.
    Leydesdorff, L.: Why words and co-words cannot map the development of the sciences. J. Am. Soc. Inf. Sci. 48(5), 418–427 (1997)CrossRefGoogle Scholar
  20. 20.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)Google Scholar
  21. 21.
    Cuingnet, R., Gerardin, E., Tessieras, J., et al.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2011)CrossRefGoogle Scholar
  22. 22.
    Klöppel, S., Stonnington, C.M., Chu, C., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3), 681–689 (2008)CrossRefGoogle Scholar
  23. 23.
    Jack Jr., C.R., Bernstein, M.A., Fox, N.C., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med. 27(4), 685–691 (2008)CrossRefGoogle Scholar
  24. 24.
    Ashburner, M., Bergman, C.M.: Drosophila melanogaster: a case study of a model genomic sequence and its consequences. Genome Res. 15(12), 1661–1667 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dongxiao Gu
    • 1
  • Kang Li
    • 1
  • Xiaoyu Wang
    • 2
    Email author
  • Changyong Liang
    • 1
  1. 1.The School of ManagementHefei University of TechnologyHefeiChina
  2. 2.The 1st Affiliated HospitalAnhui University of Traditional Chinese MedicineHefeiChina

Personalised recommendations