Skip to main content

Conflict Measures and Importance Weighting for Information Fusion Applied to Industry 4.0

  • Chapter
  • First Online:
Information Quality in Information Fusion and Decision Making

Part of the book series: Information Fusion and Data Science ((IFDS))

Abstract

Information sources such as sensors, databases, and human experts serve as sources in order to realise condition monitoring and predictive maintenance in Industry 4.0 scenarios. Complex technical systems create a large amount of data which cannot be analysed manually. Thus, information fusion mechanisms gain increasing importance. Besides the management of large amounts of data, further challenges towards the fusion algorithms arise from epistemic uncertainties (incomplete knowledge) and—mostly overseen—conflicts in the input signals. This contribution describes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) employing the BalTLCS (balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result by a quality measure which is denoted by importance. Furthermore, we show that the numerical stability in heavy conflicts is a key factor in real-world applications. Different examples end this contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The presented information is derived from MATLAB 2016a (9.0.0.341360) 64-bit for Microsoft Windows. The declarations are also valid for earlier versions of MATLAB according to [32].

References

  1. B.M. Ayyub, G.J. Klir, Uncertainty Modeling and Analysis in Engineering and the Sciences. (Chapman & Hall/CRC, Boca Raton, 2006)

    Google Scholar 

  2. C.M. Bishop, Pattern Recognition and Machine Learning. Information Science and Statistics, 8th edn. (Springer, New York, 2009)

    Google Scholar 

  3. M. Daniel, Belief functions: a revision of plausibility conflict and pignistic conflict, in Scalable Uncertainty Management, ed. by D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi, G. Weikum, W. Liu, V.S. Subrahmanian, J. Wijsen. Lecture Notes in Computer Science, vol. 8078 (Springer, Berlin/Heidelberg, 2013), pp. 190–203

    Google Scholar 

  4. M. Daniel, Properties of plausibility conflict of belief functions, in Artificial Intelligence and Soft Computing, ed. by D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. {Pandu Rangan}, B. Steffen,M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi, G. Weikum, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada. Lecture Notes in Computer Science, vol. 7894 (Springer, Berlin/Heidelberg, 2013), pp. 235–246

    Google Scholar 

  5. M. Daniel, Conflict between belief functions: a new measure based on their non-conflicting parts, in Belief Functions: Theory and Applications, ed. by F. Cuzzolin. Lecture Notes in Computer Science, vol. 8764 (Springer, Cham, 2014), pp. 321–330

    Google Scholar 

  6. A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  7. H. Dörksen, U. Mönks, V. Lohweg, Fast classification in industrial big data environments, in 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2014) (2014), pp. 1–7

    Google Scholar 

  8. D. Dubois, H. Prade, Possibility Theory: An Approach to Computerized Processing of Uncertainty. Softcover reprint of the original 1st edn., 1988 edn. (Plenum Press, New York/London, 1988)

    Google Scholar 

  9. L. Dymova, P. Sevastjanov, K. Tkacz, T. Cheherava, A new measure of conflict and hybrid combination rules in the evidence theory, in Artificial Intelligence and Soft Computing, ed. by D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, A. Kobsa, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, D. Terzopoulos, D. Tygar, G. Weikum, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada. Lecture Notes in Computer Science, vol. 8468 (Springer, Cham, 2014), pp. 411–422

    Google Scholar 

  10. J.F. Ehlenbröker, U. Mönks, V. Lohweg, Sensor defect detection in multisensor information fusion. J. Sens. Sens. Syst. 5(2), 337–353 (2016)

    Article  Google Scholar 

  11. A. Fritze, U. Mönks, V. Lohweg, A concept for self-configuration of adaptive sensor and information fusion systems, in 21st International Conference on Emerging Technologies & Factory Automation (ETFA 2016), Berlin (2016)

    Google Scholar 

  12. A. Fritze, U. Mönks, V. Lohweg, A support system for sensor and information fusion system design. Procedia Technol. 2016(26), 580–587 (2016)

    Article  Google Scholar 

  13. A. Fritze, U. Mönks, C.A. Holst, V. Lohweg, An approach to automated fusion system design and adaptation. Sensors 17(3), 601 (2017)

    Google Scholar 

  14. M. Gebauer, Luftwaffe zweifelt an Absturzursache. DER SPIEGEL 2015(22), 64 (2015)

    Google Scholar 

  15. D.L. Hall, J. Llinas (eds.), Handbook of Multisensor Data Fusion. The Electrical Engineering and Applied Signal Processing Series (CRC Press, Boca Raton, 2001)

    Google Scholar 

  16. J.Y. Halpern, Reasoning about Uncertainty (The MIT Press, Cambridge, 2005)

    MATH  Google Scholar 

  17. IEEE Computer Society, IEEE Standard for Binary Floating-Point Arithmetic: IEEE Std 754™-1985 (IEEE, New York, 1985)

    Google Scholar 

  18. IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic: IEEE Std 754™-2008 (IEEE, Piscataway, 2008)

    Google Scholar 

  19. E.T. Jaynes, Probability Theory: The Logic of Science, 1. publ., repr edn. (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  20. B. Khaleghi, A. Khamis, F.O. Karray, S.N. Razavi, Multisensor data fusion: a review of the state-of-the-art. Inform. Fusion 14(1), 28–44 (2011)

    Article  Google Scholar 

  21. Koenig & Bauer AG, Press images (2014). http://www.kba.com/en/downloads-glossary/downloads/press-images/. Accessed 22 Apr 2016

  22. J. Kuri, Absturz des Airbus A400M: Doch Softwarefehler in der Triebwerksteuerung (2015). http://heise.de/-2678691. Accessed 25 July 2017

  23. H.L. Larsen, Importance weighted OWA aggregation of multicriteria queries, in 18th International Conference of the North American Fuzzy Information Processing Society (NAFIPS 1999) (1999), pp. 740–744. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=781792

  24. R. Li, V. Lohweg, A novel data fusion approach using two-layer conflict solving, in International Workshop on Cognitive Information Processing (CIP 2008) (IEEE, 2008), pp. 132–136. http://www.eurasip.org/Proceedings/Ext/CIP2008/papers/1569094849.pdf

  25. J.W. Li, Z.T. Hu, L. Zhou, Representation method of evidence conflict based on vector measure, in Control Conference (CCC), 2014 33rd Chinese (2014), pp. 7445–7449. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6896238

  26. V. Lohweg, U. Mönks, Sensor fusion by two-layer conflict solving, in 2nd International Workshop on Cognitive Information Processing (CIP 2010) (IEEE, 2010), pp. 370–375. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5604094

  27. V. Lohweg, C. Diederichs, D. Müller, Algorithms for hardware-based pattern recognition. EURASIP J. Appl. Signal Process. 2004(12), 1912–1920 (2004)

    Google Scholar 

  28. R.C. Luo, M.G. Kay, Data fusion and sensor integration: state-of-the-art 1990s, in Data Fusion in Robotics and Machine Intelligence, ed. by M.A. Abidi, R.C. Gonzalez (Academic, Boston, 1992), pp. 7–136

    Google Scholar 

  29. A. Martin, About conflict in the theory of belief functions, in Belief Functions: Theory and Applications, ed. by T. Denoeux, M.H. Masson. Advances in Intelligent and Soft Computing, vol. 164 (Springer, Berlin/Heidelberg, 2012), pp. 161–168

    Google Scholar 

  30. A. Martin, A.L. Jousselme, C. Osswald, Conflict measure for the discounting operation on belief functions, in 2008 11th International Conference on Information Fusion (2008), pp. 1–8

    Google Scholar 

  31. C. Minor, K. Johnson, Reliable sources and uncertain decisions in multisensor systems, in SPIE Sensing Technology + Applications, SPIE Proceedings (SPIE, 2015), p. 949803

    Google Scholar 

  32. C.B. Moler, Numerical Computing with Matlab (Society for Industrial and Applied Mathematics, Philadelphia, 2004)

    Book  Google Scholar 

  33. U. Mönks, Information Fusion Under Consideration of Conflicting Input Signals (Springer, Berlin/Heidelberg, 2017)

    Book  Google Scholar 

  34. U. Mönks, V. Lohweg, Fast evidence-based information fusion, in 4th International Workshop on Cognitive Information Processing (CIP 2014) (IEEE, 2014), pp. 1–6

    Google Scholar 

  35. U. Mönks, D. Petker, V. Lohweg, Fuzzy-pattern-classifier training with small data sets, in Information Processing and Management of Uncertainty in Knowledge-Based Systems, ed. by E. Hüllermeier, R. Kruse, F. Hoffmann. Communications in Computer and Information Science, vol. 80 (Springer, Berlin/Heidelberg, 2010), pp. 426–435

    Google Scholar 

  36. U. Mönks, H. Trsek, L. Dürkop, V. Geneiß, V. Lohweg, Towards distributed intelligent sensor and information fusion. Mechatronics 34, 63–71 (2015)

    Article  Google Scholar 

  37. U. Mönks, H. Dörksen, V. Lohweg, M. Hübner, Information fusion of conflicting input data. Sensors 16(11), 1798 (2016)

    Google Scholar 

  38. M. Niederhöfer, V. Lohweg, Application-based approach for automatic texture defect recognition on synthetic surfaces, in IEEE International Conference on Emerging Technologies and Factory Automation, 2008. ETFA 2008 (2008), pp. 229–232. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4638397

  39. A. Ross, A.K. Jain, Multimodal human recognition systems, in Multi-sensor Image Fusion and Its Applications, ed. by Z. Liu, R. Blum. Signal Processing and Communications, vol. 26 (CRC Press, Boca Raton, 2005), pp. 289–301

    Google Scholar 

  40. G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)

    MATH  Google Scholar 

  41. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  42. F. Smarandache, D. Han, A. Martin, Comparative study of contradiction measures in the theory of belief functions, in 2012 15th International Conference on Information Fusion (FUSION) (2012), pp. 271–277. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6289814

  43. The MathWorks, Inc, Floating-Point Numbers. http://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html. Accessed 23 July 2016

  44. G. Traufetter, Gehirnschlag im Cockpit. DER SPIEGEL 2010(8), 120–123 (2010)

    Google Scholar 

  45. G. Traufetter, Auf Absturz programmiert. DER SPIEGEL 2015(13), 120–121 (2015)

    Google Scholar 

  46. G. Traufetter, Steigflug ins Verderben. DER SPIEGEL 2015(2), 116 (2015)

    Google Scholar 

  47. K. Voth, S. Glock, U. Mönks, V. Lohweg, T. Türke, Multi-sensory machine diagnosis on security printing machines with two-layer conflict solving, in SENSOR+TEST Conference 2011 (AMA Service GmbH, Wunstorf, 2011), pp. 686–691

    Google Scholar 

  48. R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  MathSciNet  Google Scholar 

  49. L.A. Zadeh, Fuzzy sets. Inform. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  50. L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Mönks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mönks, U., Lohweg, V., Dörksen, H. (2019). Conflict Measures and Importance Weighting for Information Fusion Applied to Industry 4.0. In: Bossé, É., Rogova, G. (eds) Information Quality in Information Fusion and Decision Making. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-030-03643-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03643-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03642-3

  • Online ISBN: 978-3-030-03643-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics