Skip to main content

Decision-Aid Methods Based on Belief Function Theory with Application to Torrent Protection

  • Chapter
  • First Online:
Information Quality in Information Fusion and Decision Making

Part of the book series: Information Fusion and Data Science ((IFDS))

Abstract

In mountainous areas, decision-makers must find the best solution to protect elements-at-torrential risk. The decision process involves several criteria and is based on imperfect information. Classical Multi-Criteria Decision-Aiding methods (MCDAs) are restricted to precise criteria evaluation for decision-making under a risky environment and suffer of rank reversal problems. To bridge these gaps, several MCDAs have been recently developed within belief function theory framework. The aims of this chapter are to introduce how these methods can be applied in practice and to introduce their general principles. To show their applicability to the real-life problem, we apply them to the Decision-Making Problem (DMP) comprising the comparison of several protective alternatives against torrential floods and selection of the most efficient one. We finally discuss the method improvements to promote their practical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, the ignorance of a parameter value x belonging to [a, b] is usually modeled by a uniform probability distribution function (pdf) over [a, b], which yields from the probability calculus to a nonuniform pdf of 1∕x on [1∕b; 1∕a]. This result is not acceptable from the ignorance modeling standpoint because if one has no specific information on x, we cannot get more information on 1∕x but that 1∕x belongs to [1∕b; 1∕a]. Therefore the uniform pdf often used to model ignorance in probability theory is problematic.

  2. 2.

    For a technical reason, one allows to commit some mass on the empty set in this discounting. This is not a problem because the final fusion result will be normalized.

  3. 3.

    For any BBAs x, y, z defined on 2Θ, a true distance metric d(x, y) satisfies the properties of non-negativity (d(x, y) ≥ 0), non-degeneracy (d(x, y) = 0 ⇔ x = y), symmetry (d(x, y) = d(y, x)), and triangle inequality (d(x, y) + d(y, z) ≥ d(x, z)).

  4. 4.

    Q l = liquid flow.

  5. 5.

    V s = solid volume.

  6. 6.

    V l = debris flow volume.

References

  1. S. Carladous, G. Piton, A. Recking, F. Liébault, D. Richard, J.-M. Tacnet, D. Kuss, F. Philippe, Y. Quefféléan, O. Marco, Towards a better understanding of the today French torrents management policy through a historical perspective, in 3rd International Conference FLOODrisk, Lyon (2016)

    Google Scholar 

  2. B. Roy, Méthodologie Multicritère d’Aide à la Décision (Economica Collection Gestion, Paris, 1985)

    Google Scholar 

  3. T.L. Saaty, Multicriteria Decision Making – The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation (McGraw-Hill, Pittsburgh, 1980)

    MATH  Google Scholar 

  4. Y.J. Lai, T.Y. Liu, C.L. Hwang, TOPSIS for MODM. Eur. J. Oper. Res. 76, 486–500 (1994)

    Article  Google Scholar 

  5. N. Hanley, C.L. Spash, Cost-Benefit Analysis and the Environment (Edward Elgar, Cheltenham, 1993)

    Google Scholar 

  6. S. Carladous, J.-M. Tacnet, J. Dezert, D. Han, M. Batton-Hubert, Evaluation of efficiency of torrential protective structures with new BF-TOPSIS methods, in 19th International Conference on Information Fusion, Heidelberg (2016)

    Google Scholar 

  7. J.-M. Tacnet, M. Batton-Hubert, J. Dezert, A two-step fusion process for multi-criteria decision applied to natural hazards in mountains, in International Workshop on the Theory of Belief Functions, Brest (2010)

    Google Scholar 

  8. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  9. L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  Google Scholar 

  10. J. Dezert, D. Han, H. Yin, A new belief function based approach for multi-criteria decision-making support, in 19th International Conference on Information Fusion, Heidelberg (2016)

    Google Scholar 

  11. J.-M. Tacnet, J. Dezert, Cautious OWA and evidential reasoning for decision making under uncertainty, in 14th International Conference on Information Fusion, Chicago (2011), pp. 2074–2081

    Google Scholar 

  12. D. Han, J. Dezert, J.-M. Tacnet, C. Han, A fuzzy-cautious OWA approach with evidential reasoning, in 15th International Conference on Information Fusion, Singapore (2012), pp. 278–285

    Google Scholar 

  13. R. Yager, Decision making under Dempster-Shafer uncertainties. Stud. Fuzziness Soft Comput. 219, 619–632 (2008)

    Article  Google Scholar 

  14. F.H. Knight, Risk, Uncertainty, and Profit (Houghton Mifflin Company, 1921)

    Google Scholar 

  15. A. Schärlig, Décider sur plusieurs critères. Panorama de l’aide à la décision multicritère (Presses Polytechniques et Universitaires Romandes, Lausanne, 1985)

    Google Scholar 

  16. J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944)

    MATH  Google Scholar 

  17. B. Mazzorana, J. Hübl, S. Fuchs, Improving risk assessment by defining consistent and reliable system scenarios. Nat. Hazards Earth Syst. Sci. 9, 145–159 (2009)

    Article  Google Scholar 

  18. L.J. Savage, Foundations of Statistics (Wiley, New York, 1954)

    MATH  Google Scholar 

  19. J.-M. Tacnet, Prise en compte de l’incertitude dans l’expertise des risques naturels en montagne par analyse multicritères et fusion d’information. Ph.D. Thesis, ENSMSE: Saint-Étienne (2009)

    Google Scholar 

  20. K.J. Arrow, L. Hurwicz, An optimality criterion for decision-making under ignorance, in Uncertainty and Expectations in Economics, ed. by C.F. Carter, J.L. Ford, G.L.S. Shackle (Basil Blackwell, Oxford, 1972), pp. 1–11

    Google Scholar 

  21. M. Allais, The so-called Allais paradox and rational decisions under uncertainty, in Expected Utility Hypotheses and the Allais Paradox. Contemporary Discussions of the Decisions Under Uncertainty with Allais’ Rejoinder, ed. by M. Allais, O. Hagen (Springer, New-York, 1979)

    Google Scholar 

  22. G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)

    MATH  Google Scholar 

  23. S. Carladous, M.-P. Michaud, J.-M. Tacnet, Q. Delvienne, A survey on protection work databases used at the Alpine space level: analysis of contents and state of the art related to protection work effectiveness assessment in START-it-uP (WP4). European START-it-uP project, Grenoble (2014)

    Google Scholar 

  24. A. Martin, Cours sur La fusion d’informations (ENSIETA, Rennes, 2005)

    Google Scholar 

  25. D. Dubois, H. Prade, Fuzzy sets, probability and measurement. Eur. J. Oper. Res. 40, 135–154 (1989)

    Article  MathSciNet  Google Scholar 

  26. D. Dubois, H. Prade, Properties of measures of information in evidence and possibility theories. Fuzzy Sets Syst. 24, 161–182 (1987)

    Article  MathSciNet  Google Scholar 

  27. D. Dubois, H. Prade, Possibility Theory – An Approach to Computerized Processing of Uncertainty (Springer, Paris, 1988)

    MATH  Google Scholar 

  28. R.P. Srivastava, Decision making under ambiguity: a belief-function perspective. Arch. Control Sci. 6(XLII), 5–27 (1997)

    Google Scholar 

  29. P. Smets, Decision making in the TBM: the necessity of the pignistic transformation. Int. J. Approx. Reason. 38, 133–147 (2005)

    Article  MathSciNet  Google Scholar 

  30. F. Smarandache, J. Dezert, Advances and Applications of DSmT for Information Fusion, vols. 1–4 (American Research Press, 2004–2015). http://www.onera.fr/fr/staff/jean-dezert

  31. P. Smets, The transferable belief model. Artif. Intell. 66, 191–234 (1994)

    Article  MathSciNet  Google Scholar 

  32. R.R. Yager, Hedging in the combination of evidence. J. Inf. Optim. Sci. 4, 73–81 (1983)

    MathSciNet  MATH  Google Scholar 

  33. F. Smarandache, J. Dezert, J.-M. Tacnet, Fusion of Sources of Evidence with Different Importances and Reliabilities (Workshop on the Theory of Belief Functions, Brest, 2010)

    Google Scholar 

  34. A. Martin, A.-L. Jousselme, C. Osswald, Conflict measure for the discounting operation on belief functions, in 11th International Conference on Information Fusion, Cologne (2008), pp. 1003–1010

    Google Scholar 

  35. L.A. Zadeh, On the Validity of Dempster’s Rule of Combination. Memo M79/24 (University of California, Berkeley, 1979)

    Google Scholar 

  36. A. Tchamova, J. Dezert, On the behavior of Dempster’s rule of combination and the foundations of Dempster-Shafer theory, in 6th International Conference of Intelligent Systems, Sofia (2012), pp. 108–113

    Google Scholar 

  37. J. Dezert, A. Tchamova, On the validity of Dempster’s fusion rule and its interpretation as a generalization of Bayesian fusion rule. Int. J. Intell. Syst. 29, 223–252 (2014)

    Article  Google Scholar 

  38. A. Martin, C. Osswald, A new generalization of the proportional conflict redistribution rule stable in terms of decision, in Advances and Applications of DSmT for Information Fusion – Collected Works, ed. by F. Smarandache, J. Dezert, vol. 2 (American Research Press, Rehoboth, 2006)

    Google Scholar 

  39. J. Dezert, D. Han, J.-M. Tacnet, S. Carladous, Decision-making with belief interval distance, in 4th International Conference on Belief Functions, Prague (2016)

    Google Scholar 

  40. A. Irpino, R. Verde, Dynamic clustering of interval data using a Wasserstein-based distance. Pattern Recogn. Lett. 29, 1648–1658 (2008)

    Article  Google Scholar 

  41. D. Han, J. Dezert, Y. Yang, New distance measures of evidence based on belief intervals, in 3rd International Conference on Belief Functions, Oxford (2014), pp. 432–441

    Google Scholar 

  42. Y.-M. Wang, Y. Luo, On rank reversal in decision analysis. Math. Comput. Model. 49, 1221–1229 (2009)

    Article  MathSciNet  Google Scholar 

  43. Y.B. Shin, S.G. Lee, D. Chun, D. Chung, A critical review of popular multi-criteria decision making methodologies. Issues Inf. Syst. 14, 358–365 (2013)

    Google Scholar 

  44. J.-M. Tacnet, J. Dezert, M. Batton-Hubert, AHP and uncertainty theories for decision making using the ER-MCDA methodology, in International Symposium on AHP, Sorrento (2011)

    Google Scholar 

  45. S. Carladous, J.-M. Tacnet, J. Dezert, G. Dupouy, M. Batton-Hubert, A new ER-MCDA mapping for decision-making based on imperfect information, in 4th International Conference on Belief Functions, Prague (2016)

    Google Scholar 

  46. S. Carladous, Approche intégrée d’aide à la décision basée sur la propagation de l’imperfection de l’informaiton – application à l’efficacité des mesures de protection torrentielle. Ph.D. Thesis, ENSMSE: Saint-Étienne (2016)

    Google Scholar 

  47. H. Yin, J. Lan, X.-R. Li, Measures for ranking estimation performance based on single or multiple performance metrics, in 16th International Conference on Information Fusion, Istanbul (2013)

    Google Scholar 

  48. J. Dezert, D. Han, J.-M. Tacnet, Multi-criteria decision-making with imprecise scores and BF-TOPSIS, in 20th International Conference on Information Fusion, Xi’an (2017)

    Google Scholar 

  49. F. Smarandache, J. Dezert, Modified PCR rules of combination with degrees of intersections, in 8th International Conference on Information Fusion, Washington, DC (2015), pp. 2100–2107

    Google Scholar 

  50. M.C. Florea, A.-L. Jousselme, D. Grenier, E. Bossé, A critical review of popular multi-criteria decision making methodologies. Approximation techniques for the transformation of fuzzy sets into random sets. Fuzzy Sets Syst. 159, 270–288 (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the French Agricultural and Forest Ministry (MAA) and the French Environment Ministry (MTES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Carladous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carladous, S., Tacnet, JM., Dezert, J., Batton-Hubert, M. (2019). Decision-Aid Methods Based on Belief Function Theory with Application to Torrent Protection. In: Bossé, É., Rogova, G. (eds) Information Quality in Information Fusion and Decision Making. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-030-03643-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03643-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03642-3

  • Online ISBN: 978-3-030-03643-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics