Advertisement

Convenience-Based Periodic Composition of IoT Services

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11236)

Abstract

We propose a novel service mining framework to personalize services in an IoT based smart home. We describe a new technique based on the concept of convenience to discover periodic composite IoT services to suit the smart home occupant’s convenience needs. The key features of convenience is the ability to model the spatio-temporal aspects as occupants move in time and space within the smart home. We propose a novel framework for the transient composition of spatio-temporal IoT service. We design two strategies to prune non-promising compositions. Specifically, a significance model is proposed to prune insignificant composite IoT services. We describe a spatio-temporal proximity technique to prune loosely correlated composite IoT services. A periodic composite IoT service model is proposed to model the regularity of composite IoT services occurring at a certain location in a given time interval. The experimental results on real datasets show the efficiency and effectiveness of our proposed approach.

Keywords

IoT service Periodic composite IoT services Convenience 

Notes

Acknowledgment

This research was partly made possible by NPRP 9-224-1-049 grant from the Qatar National Research Fund (a member of The Qatar Foundation) and DP160100149 and LE180100158 grants from Australian Research Council. The statements made herein are solely the responsibility of the authors.

References

  1. 1.
    Atzori, L., Iera, A.: The Internet of Things: a survey. J. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefGoogle Scholar
  2. 2.
    Yao, L.: Unveiling correlations via mining human-thing interactions in the web of things. ACM Trans. Intell. Syst. Technol. 8(5), 62 (2017)CrossRefGoogle Scholar
  3. 3.
    Miorandi, D.: Internet of Things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)CrossRefGoogle Scholar
  4. 4.
    Zheng, G., Bouguettaya, A.: Service mining on the web. IEEE Trans. Serv. Comput. 2(1), 65–78 (2009)CrossRefGoogle Scholar
  5. 5.
    Huang, B., Bouguettaya, A., Dong, H., Chen, L.: Service mining for Internet of Things. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 566–574. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46295-0_36CrossRefGoogle Scholar
  6. 6.
    Ghari Neiat, A., Bouguettaya, A.: Crowdsourcing of Sensor Cloud Services, pp. 1–116. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91536-4CrossRefGoogle Scholar
  7. 7.
    Issarny, V., Bouloukakis, G., Georgantas, N., Billet, B.: Revisiting service-oriented architecture for the IoT: a middleware perspective. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 3–17. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46295-0_1CrossRefGoogle Scholar
  8. 8.
    Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Commun. ACM 60, 64–72 (2017)CrossRefGoogle Scholar
  9. 9.
    Patel, D., Hsu, W.: Mining relationships among interval-based events for classification. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 393–404. ACM (2008)Google Scholar
  10. 10.
    Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24646-6_10CrossRefGoogle Scholar
  11. 11.
    Shao, W., Bouguettaya, A.: Clustering big spatiotemporal-interval data. IEEE Trans. Big Data 2, 190–203 (2016)CrossRefGoogle Scholar
  12. 12.
    Chen, Y.-C., Chen, C.-C., Peng, W.-C., Lee, W.-C.: Mining correlation patterns among appliances in smart home environment. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), vol. 8444, pp. 222–233. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06605-9_19CrossRefGoogle Scholar
  13. 13.
    Bouguettaya, A., et al.: End-to-end service support for mashups. IEEE Trans. Serv. Comput. 3, 250–263 (2010)CrossRefGoogle Scholar
  14. 14.
    Chen, Y.-C.: Significant correlation pattern mining in smart homes. ACM Trans. Intell. Syst. Technol. (TIST) 6(3), 35 (2015)Google Scholar
  15. 15.
    Wu, Q.: Cognitive internet of things: a new paradigm beyond connection. IEEE Internet of Things J. 1, 129–143 (2014)CrossRefGoogle Scholar
  16. 16.
    Rashidi, P., Cook, D.J.: COM: a method for mining and monitoring human activity patterns in home-based health monitoring systems. ACM Trans. Intell. Syst. Technol. (TIST) 4(4), 64 (2013)Google Scholar
  17. 17.
    Meyer, S.: A survey of research on context-aware homes. In: Proceedings of the ACSW, pp. 159–168 (2003)Google Scholar
  18. 18.
    Singla, G., Cook, D.J.: Tracking activities in complex settings using smart environment technologies. Int. J. Biosci. Psychiatry Technol. (IJBSPT) 1(1), 25 (2009)Google Scholar
  19. 19.
    De Souza, R.M.C.R., De Carvalho, F.A.T.: Clustering of interval data based on cityblock distances. Pattern Recognit. Lett. 25(3), 353–365 (2004)CrossRefGoogle Scholar
  20. 20.
    Saguna, S., Zaslavsky, A.: Complex activity recognition using context-driven activity theory and activity signatures. ACM Trans. Comput.-Hum. Interact. (TOCHI) 20(6), 32 (2013)Google Scholar
  21. 21.
    Li, K., Fu, Y.: Prediction of human activity by discovering temporal sequence patterns. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1644–1657 (2014)CrossRefGoogle Scholar
  22. 22.
    Li, Z.: Mining periodic behaviors for moving objects. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1099–1108(2010)Google Scholar
  23. 23.
    Pei, J.: Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)CrossRefGoogle Scholar
  24. 24.
    Huang, F., Smidts, C.: Causal mechanism graph – a new notation for capturing cause-effect knowledge in software dependability. Reliab. Eng. Syst. Saf. 158, 196–212 (2017)CrossRefGoogle Scholar
  25. 25.
    Neiat, A.G.: Crowdsourced coverage as a service: two-level composition of sensor cloud services. IEEE Trans. Knowl. Data Eng. 29, 1384–1397 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Information TechnologiesThe University of SydneySydneyAustralia

Personalised recommendations