Advertisement

Mobile Crowdsourced Sensors Selection for Journey Services

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11236)

Abstract

We propose a mobile crowdsourced sensors selection approach to improve the journey planning service especially in areas where no wireless or vehicular sensors are available. We develop a location estimation model of journey services based on an unsupervised learning model to select and cluster the right mobile crowdsourced sensors that are accurately mapped to the right journey service. In our model, the mobile crowdsourced sensors trajectories are clustered based on common features such as speed and direction. Experimental results demonstrate that the proposed framework is efficient in selecting the right crowdsourced sensors.

Keywords

IoT Travel planning service Spatiotemporal data Crowdsourcing Sensors selection Unsupervised learning 

Notes

Acknowledgment

This research was made possible by NPRP 9-224-1-049 grant from the Qatar National Research Fund (a member of The Qatar Foundation) and DP160100149 and LE180100158 grants from Australian Research Council. The statements made herein are solely the responsibility of the authors.

References

  1. 1.
    Yu, Z., Feng, Y., Xu, H., Zhou, X.: Recommending travel packages based on mobile crowdsourced data. IEEE Commun. Mag. 52, 56–62 (2014)CrossRefGoogle Scholar
  2. 2.
    Ye, H., Gu, T., Tao, X., Lu, J.: Crowdsourced smartphone sensing for localization in metro trains. In: Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1–9 (2014)Google Scholar
  3. 3.
    Shin, D., et al.: Urban sensing: using smartphones for transportation mode classification. Comput., Environ. Urban Syst. 53, 76–86 (2015)CrossRefGoogle Scholar
  4. 4.
    Farkas, K., Nagy, A.Z., Tomaás, T., Szábo, R.: Participatory sensing based real-time public transport information service. IEEE International Conference on Pervasive Computing and Communications Demonstrations, pp. 141–144 (2014)Google Scholar
  5. 5.
    Ahmed, K., Gregory, M.: Integrating wireless sensor networks with cloud computing. In: Seventh International Conference on Mobile Ad-Hoc and Sensor Networks, pp. 364–366 (2011)Google Scholar
  6. 6.
    Neiat, A.G., Bouguettaya, A.: Crowdsourcing of Sensor Cloud Services. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91536-4CrossRefGoogle Scholar
  7. 7.
    Ghari Neiat, A., Bouguettaya, A., Sellis, T.: Spatio-temporal composition of crowdsourced services. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 373–382. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48616-0_26CrossRefGoogle Scholar
  8. 8.
    Neiat, A.G., Bouguettaya, A., Sellis, T., Dong, H.: Failure-proof spatio-temporal composition of sensor cloud services. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 368–377. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45391-9_26CrossRefGoogle Scholar
  9. 9.
    Zhang, X., et al.: Incentives for mobile crowd sensing: a survey. IEEE Commun. Surv. Tutor. 18, 54–67 (2016)CrossRefGoogle Scholar
  10. 10.
    Neiat, A.G., Bouguettaya, A., Sellis, T., Mistry, S.: Crowdsourced coverage as a service: two-level composition of sensor cloud services. IEEE Trans. Knowl. Data Eng. 29, 1384–1397 (2017)CrossRefGoogle Scholar
  11. 11.
    Huang, Y., Chen, C., Dong, P.: Modeling herds and their evolvements from trajectory data. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 90–105. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87473-7_6CrossRefGoogle Scholar
  12. 12.
    Birant, D., Kut, A.: ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60, 208–221 (2007)CrossRefGoogle Scholar
  13. 13.
    Avni, M., Viswanath, G., Vinaya, N., ST-OPTICS: a spatial-temporal clustering algorithm with time recommendations for taxi services, Ph.D. thesis (2017)Google Scholar
  14. 14.
    Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object clusters. Proc. VLDB Endow. 3, 723–734 (2010)CrossRefGoogle Scholar
  15. 15.
    Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving objects. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1099–1108 (2010)Google Scholar
  16. 16.
    Wachowicz, M., Ong, R., Renso, C., Nanni, M.: Finding moving flock patterns among pedestrians through collective coherence. Int. J. Geogr. Inf. Sci. 25, 1849–1864 (2011)CrossRefGoogle Scholar
  17. 17.
    Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. Proc. VLDB Endow. 1, 1068–1080 (2008)CrossRefGoogle Scholar
  18. 18.
    Andersson, M., Gudmundsson, J., Laube, P., Wolle, T.: Reporting leadership patterns among trajectories. In: Proceedings of the 2007 ACM Symposium on Applied Computing, pp. 3–7 (2007)Google Scholar
  19. 19.
    de Lucca Siqueira, F., Bogorny, V.: Discovering chasing behavior in moving object trajectories. Trans. GIS 15, 667–688 (2011)CrossRefGoogle Scholar
  20. 20.
    Shao, W., Salim, F.D., Song, A., Bouguettaya, A.: Clustering big spatiotemporal-interval data. IEEE Trans. Big Data 2, 190–203 (2016)CrossRefGoogle Scholar
  21. 21.
    Jiang, Z., Shekhar, S.: Spatial and spatiotemporal big data science. In: Jiang, Z., Shekhar, S. (eds.) Spatial Big Data Science, pp. 15–44. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60195-3_2CrossRefGoogle Scholar
  22. 22.
    Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: SIGMOD, pp. 593–604 (2007)Google Scholar
  23. 23.
    Mahmoud, H., Akkari, N.: Shortest path calculation: a comparative study for location-based recommender system. In: 2016 World Symposium on Computer Applications and Research (WSCAR), pp. 1–5 (2016)Google Scholar
  24. 24.
    Xie, X.L.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13, 841–847 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, College of EngineeringQatar UniversityDohaQatar
  2. 2.School of Information TechnologiesUniversity of SydneySydneyAustralia

Personalised recommendations