Advertisement

Crowdsourcing Energy as a Service

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11236)

Abstract

We propose a new framework for crowdsourcing energy services from Internet-of-Things devices. We introduce a new crowdsourced energy as a service and energy-related quality model considering spatiotemporal aspects. We describe a new temporal composition algorithm to compose energy services to satisfy a user’s energy requirement. The temporal composition algorithm is a variation of fractional knapsack algorithm. We conduct preliminary experiments to demonstrate the performance and effectiveness of our approach.

Keywords

Crowdsourcing IoT services Spatiotemporal service Temporal service composition Energy as a service Wearable device 

Notes

Acknowledgments

This research was partly made possible by NPRP 9-224-1-049 grant from the Qatar National Research Fund (a member of The Qatar Foundation) and DP1601 00149 and LE180100158 grants from Australian Research Council. The statements made herein are solely the responsibility of the authors.

References

  1. 1.
    Bouguettaya, A., et al.: End-to-end service support for mashups. IEEE Trans. Serv. Comput. 3(3), 250–263 (2010).  https://doi.org/10.1109/TSC.2010.34CrossRefGoogle Scholar
  2. 2.
    Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Commun. ACM 60(4), 64–72 (2017).  https://doi.org/10.1145/2983528CrossRefGoogle Scholar
  3. 3.
    Carroll, A., Heiser, G., et al.: An analysis of power consumption in a smartphoneGoogle Scholar
  4. 4.
    Ghari Neiat, A., Bouguettaya, A.: Crowdsourcing of Sensor Cloud Services. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91536-4CrossRefGoogle Scholar
  5. 5.
    Habak, K., Ammar, M., Harras, K.A., Zegura, E.: Femto clouds: leveraging mobile devices to provide cloud service at the edge. In: 2015 IEEE 8th International Conference on Cloud Computing (CLOUD), pp. 9–16. IEEE (2015)Google Scholar
  6. 6.
    Ishii, H., Ibaraki, T., Mine, H.: Fractional knapsack problems. Math. Program. 13(1), 255–271 (1977)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jun, B., Hong, B., Yu, B.: Dynamic splitting policies of the adaptive 3DR-tree for indexing continuously moving objects. In: Mařík, V., Retschitzegger, W., Štěpánková, O. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 308–317. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45227-0_31CrossRefGoogle Scholar
  8. 8.
    Na, W., Park, J., Lee, C., Park, K., Kim, J., Cho, S.: Energy-efficient mobile charging for wireless power transfer in internet of things networks. IEEE IoT J. 5(1), 79–92 (2018)Google Scholar
  9. 9.
    Neiat, A.G., Bouguettaya, A., Sellis, T., Mistry, S.: Crowdsourced coverage as a service: two-level composition of sensor cloud services. IEEE Trans. Knowl. Data Eng. 29(7), 1384–1397 (2017)CrossRefGoogle Scholar
  10. 10.
    Perera, C., Liu, C.H., Jayawardena, S., Chen, M.: A survey on internet of things from industrial market perspective. IEEE Access 2, 1660–1679 (2014)CrossRefGoogle Scholar
  11. 11.
    Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9), 2271–2284 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., Hassan, M., Seneviratne, A.: A survey of wearable devices and challenges. IEEE Commun. Surv. Tutor. 19(4), 2573–2620 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.The University of SydneySydneyAustralia

Personalised recommendations