Skip to main content

Constructing Independently Verifiable Privacy-Compliant Type Systems for Message Passing Between Black-Box Components

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 11294)

Abstract

Privacy by design (PbD) is the principle that privacy should be considered at every stage of the software engineering process. It is increasingly both viewed as best practice and required by law. It is therefore desirable to have formal methods that provide guarantees that certain privacy-relevant properties hold. We propose an approach that can be used to design a privacy-compliant architecture without needing to know the source code or internal structure of any individual component. We model an architecture as a set of agents or components that pass messages to each other. We present in this paper algorithms that take as input an architecture and a set of privacy constraints, and output an extension of the original architecture that satisfies the privacy constraints.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In practice, this would presumably be achieved by encryption, but we abstract from these implementation details here. See Sect. 2.1 for more discussion.

References

  1. Alur, R., Černý, P., Zdancewic, S.: Preserving secrecy under refinement. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 107–118. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_10

    CrossRef  Google Scholar 

  2. Antignac, T., Le Métayer, D.: Privacy architectures: reasoning about data minimisation and integrity. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp. 17–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11851-2_2

    CrossRef  Google Scholar 

  3. Antignac, T., Le Métayer, D.: Privacy by design: from technologies to architectures. In: Preneel, B., Ikonomou, D. (eds.) APF 2014. LNCS, vol. 8450, pp. 1–17. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06749-0_1

    CrossRef  Google Scholar 

  4. Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and contextual integrity: framework and applications. In: IEEE Symposium on Security and Privacy, pp. 184–198 (2006)

    Google Scholar 

  5. Basin, D., Klaedtke, F., Müller, S.: Monitoring security policies with metric first-order temporal logic. In: ACM SACMAT 2010 (2010)

    Google Scholar 

  6. Butin, D., Chicote, M., le Métayer, D.: Log design for accountability. In: IEEE Symposium on Security and Privacy Workshops, pp. 1–7 (2013)

    Google Scholar 

  7. Butin, D., Chicote, M., Le Métayer, D.: Strong accountability: beyond vague promises. Reloading Data Protection, pp. 343–369. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7540-4_16

    CrossRef  Google Scholar 

  8. Cavoukian, A.: Privacy by design. IEEE Technol. Soc. Mag. 31(4), 18–19 (2012)

    CrossRef  Google Scholar 

  9. Cavoukian, A., Stoddart, J., Dix, A., Nemec, I., Peep, V., Shroff, M.: Resolution on privacy by design. In: 32nd International Conference of Data Protection and Privacy Commissioners (2010)

    Google Scholar 

  10. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–1210 (2010)

    CrossRef  Google Scholar 

  11. Cortesi, A., Ferrara, P., Pistoia, M., Tripp, O.: Datacentric semantics for verification of privacy policy compliance by mobile applications. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 61–79. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-8_4

    CrossRef  MATH  Google Scholar 

  12. Enck, W., et al.: TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 32(2), 5 (2014)

    CrossRef  Google Scholar 

  13. Regulation (EU) 2016/679 of the European parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/EC (general data protection regulation). Official journal of the European union L119, 1–88, May 2016. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

  14. Federal Trade Commission: Protecting consumer privacy in an era of rapid change. FTC report (2012)

    Google Scholar 

  15. Ferrara, P., Tripp, O., Pistoia, M.: MorphDroid: fine-grained privacy verification. In: Proceedings of the 31st Annual Computer Security Applications Conference, pp. 371–380. ACM (2015)

    Google Scholar 

  16. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java information flow (2001)

    Google Scholar 

  17. Ni, Q., et al.: Privacy-aware role-based access control. ACM Trans. Inf. Syst. Secur. (TISSEC) 13(3), 24 (2010)

    CrossRef  Google Scholar 

  18. Pottier, F., Simonet, V.: Information flow inference for ml. ACM Trans. Program. Lang. Syst. (TOPLAS) 25(1), 117–158 (2003)

    CrossRef  Google Scholar 

  19. Schreckling, D., Köstler, J., Schaff, M.: Kynoid: real-time enforcement of fine-grained, user-defined, and data-centric security policies for Android. Inf. Secur. Tech. Rep. 17(3), 71–80 (2013)

    CrossRef  Google Scholar 

  20. Yang, J., Yessenov, K., Solar-Lezama, A.: A language for automatically enforcing privacy policies. In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principle of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, 22–28 January 2012, pp. 85–96 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adams, R., Schupp, S. (2018). Constructing Independently Verifiable Privacy-Compliant Type Systems for Message Passing Between Black-Box Components. In: Piskac, R., Rümmer, P. (eds) Verified Software. Theories, Tools, and Experiments. VSTTE 2018. Lecture Notes in Computer Science(), vol 11294. Springer, Cham. https://doi.org/10.1007/978-3-030-03592-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03592-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03591-4

  • Online ISBN: 978-3-030-03592-1

  • eBook Packages: Computer ScienceComputer Science (R0)