Advertisement

Ontology-Based Modeling for a Personalized MOOC Recommender System

  • Sara Assami
  • Najima Daoudi
  • Rachida Ajhoun
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 111)

Abstract

Technology has revolutionized information access and influenced our learning habits. In this context, Massive Open Online Courses (MOOC) platforms emerged to satisfy the web user’s need for a lifelong learning. These platforms include research filters to help the learner find the right learning content, but the high dropout rates suggest the inadequacy of recommended MOOCs to learner needs. Hence, MOOC’s recommendation should reconsider the learner profile modeling to enlarge the scope of recommendation parameters. In this paper, we aim to choose the proper modeling technique for the personalization criteria used in a MOOC recommender system, such as the pace of learning and the cognitive learning style. For this purpose, an ontology-based modeling is used to structure the common concepts deduced from the learner profile and MOOC content. It is also a trace-based approach since it will take into consideration the learning history of a learner profile for an accurate MOOC recommendation.

Keywords

MOOC recommendation Adaptive MOOC Personalization criterion Learning ontology Trace-based approach 

References

  1. 1.
    Assami, S., Daoudi, N., Ajhoun, R.: Personalization criteria for enhancing learner engagement in MOOC platforms. In: 2018 IEEE Global Engineering Education Conference (EDUCON), Santa Cruz de Tenerife, Spain, pp. 1271–1278. IEEE (2018)Google Scholar
  2. 2.
    Clerc, F., Lefevre, M., Guin, N., Marty, J.-C.: Mise en place de la personnalisation dans le cadre des MOOCs. In: 7ème Conférence sur les Environnements Informatiques pour l’Apprentissage Humain - EIAH 2015, Agadir, Morocco (2015)Google Scholar
  3. 3.
    Gutiérrez-Rojas, I., Alario-Hoyos, C., Pérez-Sanagustín, M., Leony, D., Delgado-Kloos, C.: Towards an Outcome-based discovery and filtering of MOOCs using moocrank. In: European MOOC Stakeholder Summit, pp. 50–57 (2014)Google Scholar
  4. 4.
    Sonwalkar, N.: The first adaptive MOOC: a case study on pedagogy framework and scalable cloud architecture - Part I. In: MOOCs Forum, pp. 22–29 (2013)CrossRefGoogle Scholar
  5. 5.
    Manouselis, N., Drachsler, H., Verbert, K., Duval, E.: Recommender Systems for Learning: An introduction. Springer, New York (2012)Google Scholar
  6. 6.
    Settouti, L., Guin, N., Mille, A., Luengo, V.: A trace-based learner modelling framework for technology-enhanced learning systems. In: 10th IEEE International Conference on Advanced Learning Technologies, pp. 73–77. IEEE (2010)Google Scholar
  7. 7.
    Herder, E.: User Modeling and Personalization 3: User Modeling – Techniques (2016). https://www.eelcoherder.com/images/teaching/usermodeling/03_user_modeling_techniques.pdf
  8. 8.
    Benyon, D., Murray, D.: Applying user modeling to human-computer interaction design. Artif. Intell. Rev. 7, 199–225 (1993)CrossRefGoogle Scholar
  9. 9.
    Chrysafiadi, K., Virvou, M.: Student modeling approaches: a literature review for the last decade. Expert Syst. Appl. 40, 4715–4729 (2013)CrossRefGoogle Scholar
  10. 10.
    Cocea, M., Magoulas, G.D.: Participatory learner modelling design: a methodology for iterative learner models development. Inf. Sci. 321, 48–70 (2015)CrossRefGoogle Scholar
  11. 11.
    Behaz, A.: Environnement Numérique de Travail de type Hypermédia Adaptatif Dynamique. Université hadj Lakhdar Batna Faculté, Faculté des Sciences, Algeria (2012)Google Scholar
  12. 12.
    Mitrovic, A.: Modeling domains and students with constraint-based modeling, Chap. 4. Advances in Intelligent Tutoring Systems. SCI, vol. 308, pp. 63–80 (2010)Google Scholar
  13. 13.
    Bashir, A., Khan, L., Awad, M.: Bayesian networks. In: Encyclopedia of Data Warehousing and Mining, USA, pp. 89–93 (2006)Google Scholar
  14. 14.
    Porcel, C., Martinez-Cruz, C., Bernabé-Moreno, J., Tejeda-Lorente, A., Herrera-Viedma, E.: Integrating ontologies and fuzzy logic to represent user-trustworthiness in recommender systems. Procedia Comput. Sci. 55, 603–612 (2015)CrossRefGoogle Scholar
  15. 15.
    Downes, S.: Free Learning Essays on Open Educational Resources (2011)Google Scholar
  16. 16.
    Fani Sani, M.R., Mohammedian, N., Hoseini, M.: Ontological learner modeling. Procedia Soc. Behav. Sci. 46, 5238–5243 (2012)CrossRefGoogle Scholar
  17. 17.
    Onah, D.F.O., Sinclair, J.: Massive open online courses: an adaptive learning framework. In: 9th International Technology, Education and Development Conference, Madrid, Spain, pp. 2–4 (2015)Google Scholar
  18. 18.
    Maalej, W., Pernelle, P., Ben Amar, C., Carron, T., Kredens, E.: Identification and modeling of the skills within MOOCs. In: AICCSA 2016 - 13th ACS/IEEE International Conference on Computer Systems and Applications, Agadir, Morocco. IEEE (2016)Google Scholar
  19. 19.
    Labib, A.E., Canos, J.H., Penadés, M.C.: On the way to learning style models integration: a learner’s characteristics ontology. Comput. Hum. Behav. 73, 433–445 (2017)CrossRefGoogle Scholar
  20. 20.
    Akharraz, L., El Mezouary, A., Mahani, Z.: To context-aware learner modeling based on ontology. In: 2018 IEEE Global Engineering Education Conference (EDUCON), Santa Cruz de Tenerife, Spain, pp. 1332–1340. IEEE (2018)Google Scholar
  21. 21.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire SSLENSIAS (National School of Computer Science and Systems), Mohammed Vth UniversityRabatMorocco
  2. 2.Département Génie de données et de connaissancesInformation Science SchoolRabatMorocco

Personalised recommendations