Abstract
Graph signal processing deals with signals whose domain, defined by a graph, is irregular. An overview of basic graph forms and definitions is presented first. Spectral analysis of graphs is discussed next. Some simple forms of processing signal on graphs, like filtering in the vertex and spectral domain, subsampling and interpolation, are given. Graph topologies are reviewed and analyzed as well. Theory is illustrated through examples, including few applications at the end of the chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
L.J. Grady, J.R. Polimeni, Discrete Calculus: Applied Analysis on Graphs for Computational Science (Springer Science & Business Media, New York, 2010)
S.S. Ray, Graph Theory with Algorithms and Its Applications: in Applied Science and Technology (Springer Science & Business Media, New York, 2012)
A. Marques, A. Ribeiro, S. Segarra, Graph signal processing: fundamentals and applications to diffusion processes, in International Conference on Acoustics, Speech, and Signal Processing, (ICASSP), 2017 (IEEE, 2017)
H. Krim, A.B. Hamza, Geometric Methods in Signal and Image Analysis (Cambridge University Press, Cambridge, 2015)
A. Bunse-Gerstner, W.B. Gragg, Singular value decompositions of complex symmetric matrices. J. Comput. Appl. Math. 21(1), 41–54 (1988)
D.S. Grebenkov, B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55(4), 601–667 (2013)
R. Bapat, The Laplacian matrix of a graph. Math. Stud.-India 65(1), 214–223 (1996)
S. O’Rourke, V. Vu, K. Wang, Eigenvectors of random matrices: a survey. J. Comb. Theory Ser. A 144, 361–442 (2016)
K. Fujiwara, Eigenvalues of Laplacians on a closed Riemannian manifold and its nets. Proc. Am. Math. Soc. 123(8), 2585–2594 (1995)
S.U. Maheswari, B. Maheswari, Some properties of Cartesian product graphs of Cayley graphs with arithmetic graphs. Int. J. Comput. Appl. 138(3) (2016)
D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs: Theory and Application, vol. 87 (Academic, New York, 1980)
D.M. Cvetković, M. Doob, Developments in the theory of graph spectra. Linear Multilinear Algebra 18(2), 153–181 (1985)
D.M. Cvetković, I. Gutman, Selected topics on applications of graph spectra. Matematicki Institut SANU (2011)
A.E. Brouwer, W.H. Haemers, Spectra of Graphs (Springer Science & Business Media, New York, 2011)
F. Chung, Spectral Graph Theory (AMS, Providence, 1997)
O. Jones, Spectra of Simple Graphs, vol. 13 (Whitman College, Walla Walla, 2013)
D. Mejia, O. Ruiz-Salguero, C.A. Cadavid, Spectral-based mesh segmentation. Int. J. Interact. Des. Manuf. (IJIDeM) 11(3), 503–514 (2017)
H. Lu, Z. Fu, X. Shu, Non-negative and sparse spectral clustering. Pattern Recognit. 47(1), 418–426 (2014)
X. Dong, P. Frossard, P. Vandergheynst, N. Nefedov, Clustering with multi-layer graphs: a spectral perspective. IEEE Trans. Signal Process. 60(11), 5820–5831 (2012)
R. Horaud, A short tutorial on graph Laplacians, Laplacian embedding, and spectral clustering (2009)
R. Hamon, P. Borgnat, P. Flandrin, C. Robardet, Relabelling vertices according to the network structure by minimizing the cyclic bandwidth sum. J. Complex Netw. 4(4), 534–560 (2016)
M. Masoumi, A.B. Hamza, Spectral shape classification: a deep learning approach. J. Vis. Commun. Image Represent. 43, 198–211 (2017)
M. Masoumi, C. Li, A.B. Hamza, A spectral graph wavelet approach for nonrigid 3d shape retrieval. Pattern Recognit. Lett. 83, 339–348 (2016)
J.M. Mouraaa, Graph signal processing, Cooperative and Graph Signal Processing (Elsevier, Amsterdam, 2018), pp. 239–259
M. Vetterli, J. Kovačević, V. Goyal, Foundations of Signal Processing (Cambridge University Press, Cambridge, 2014)
A. Sandryhaila, J.M. Moura, Discrete signal processing on graphs. IEEE Trans. Signal Process. 61(7), 1644–1656 (2013)
V.N. Ekambaram, Graph-Structured Data Viewed Through a Fourier Lens (University of California, Berkeley, 2014)
A. Sandryhaila, J.M. Moura, Discrete signal processing on graphs: frequency analysis. IEEE Trans. Signal Process. 62(12), 3042–3054 (2014)
A. Sandryhaila, J.M. Moura, Big data analysis with signal processing on graphs: representation and processing of massive data sets with irregular structure. IEEE Signal Process. Mag. 31(5), 80–90 (2014)
D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)
R. Hamon, P. Borgnat, P. Flandrin, C. Robardet, Extraction of temporal network structures from graph-based signals. IEEE Trans. Signal Inf. Process. Netw. 2(2), 215–226 (2016)
S. Chen, A. Sandryhaila, J.M. Moura, J. Kovačević, Signal denoising on graphs via graph filtering, in 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, 2014), pp. 872–876
A. Gavili, X.-P. Zhang, On the shift operator, graph frequency, and optimal filtering in graph signal processing. IEEE Trans. Signal Process. 65(23), 6303–6318 (2017)
A. Venkitaraman, S. Chatterjee, P. Händel, Hilbert transform, analytic signal, and modulation analysis for graph signal processing (2016), arXiv:1611.05269
A. Agaskar, Y.M. Lu, A spectral graph uncertainty principle. IEEE Trans. Inf. Theory 59(7), 4338–4356 (2013)
X. Yan, B.M. Sadler, R.J. Drost, P.L. Yu, K. Lerman, Graph filters and the z-Laplacian. IEEE J. Sel. Top. Signal Process. 11, 774–784 (2017)
X. Wang, J. Chen, Y. Gu, Local measurement and reconstruction for noisy bandlimited graph signals. Signal Process. 129, 119–129 (2016)
S. Segarra, A. Ribeiro, Stability and continuity of centrality measures in weighted graphs. IEEE Trans. Signal Process. 64(3), 543–555 (2016)
D.I. Shuman, B. Ricaud, P. Vandergheynst, Vertex-frequency analysis on graphs. Appl. Comput. Harmon. Anal. 40(2), 260–291 (2016)
S. Chen, A. Sandryhaila, J. Kovačević, Sampling theory for graph signals, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2015), pp. 3392–3396
S. Chen, R. Varma, A. Sandryhaila, J. Kovačević, Discrete signal processing on graphs: sampling theory. IEEE Trans. Signal Process. 63(24), 6510–6523 (2015)
S. Chen, A. Sandryhaila, J.M. Moura, J. Kovačević, Signal recovery on graphs: variation minimization. IEEE Trans. Signal Process. 63(17), 4609–4624 (2015)
S. Chen, R. Varma, A. Singh, J. Kovačević, Signal recovery on graphs: fundamental limits of sampling strategies. IEEE Trans. Signal Inf. Process. Netw. 2(4), 539–554 (2016)
M. Tsitsvero, S. Barbarossa, P. Di Lorenzo, Signals on graphs: uncertainty principle and sampling, IEEE Trans. Signal Process. (2016). https://doi.org/10.1109/TSP.2016.2573748
X. Wang, P. Liu, Y. Gu, Local-set-based graph signal reconstruction. IEEE Trans. Signal Process. 63(9), 2432–2444 (2015)
L. Stanković, E. Sejdić, S. Stanković, M. Daković, I. Orović, A tutorial on sparse signal reconstruction and its applications in signal processing. Circuits Syst. Signal Process. 1–58 (2018)
L. Stanković, Digital signal processing with selected topics (2015)
S.K. Narang, A. Ortega, Downsampling graphs using spectral theory, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2011), pp. 4208–4211
H.Q. Nguyen, M.N. Do, Downsampling of signals on graphs via maximum spanning trees. IEEE Trans. Signal Process. 63(1), 182–191 (2015)
S.K. Narang, A. Ortega, Perfect reconstruction two-channel wavelet filter banks for graph structured data. IEEE Trans. Signal Process. 60(6), 2786–2799 (2012)
S. Segarra, A.G. Marques, G. Leus, A. Ribeiro, Interpolation of graph signals using shift-invariant graph filters, in EUSIPCO (2015), pp. 210–214
A.G. Marques, S. Segarra, G. Leus, A. Ribeiro, Sampling of graph signals with successive local aggregations. IEEE Trans. Signal Process. 64(7), 1832–1843 (2016)
A. Anis, A. Gadde, A. Ortega, Efficient sampling set selection for bandlimited graph signals using graph spectral proxies. IEEE Trans. Signal Process. 64(14), 3775–3789 (2016)
H. Behjat, U. Richter, D. Van De Ville, L. Sörnmo, Signal-adapted tight frames on graphs. IEEE Trans. Signal Process. 64(22), 6017–6029 (2016)
Y. Tanaka, A. Sakiyama, M-channel oversampled graph filter banks. IEEE Trans. Signal Process. 62(14), 3578–3590 (2014)
A. Sakiyama, Y. Tanaka, Oversampled graph Laplacian matrix for graph filter banks. IEEE Trans. Signal Process. 62(24), 6425–6437 (2014)
N. Tremblay, P. Borgnat, Subgraph-based filterbanks for graph signals. IEEE Trans. Signal Process. 64(15), 3827–3840 (2016)
J. Leskovec, C. Faloutsos, Sampling from large graphs, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2006), pp. 631–636
N. Perraudin, P. Vandergheynst, Stationary signal processing on graphs. IEEE Trans. Signal Process. 65(13), 3462–3477 (2017)
A.G. Marques, S. Segarra, G. Leus, A. Ribeiro, Stationary graph processes and spectral estimation. IEEE Trans. Signal Process. 65(22), 5911–5926 (2017)
A. Loukas, N. Perraudin, Stationary time-vertex signal processing (2016), arXiv:1611.00255
S.P. Chepuri, G. Leus, Subsampling for graph power spectrum estimation, in Sensor Array and Multichannel Signal Processing Workshop (SAM), 2016 IEEE (IEEE, 2016), pp. 1–5
G. Puy, N. Tremblay, R. Gribonval, P. Vandergheynst, Random sampling of bandlimited signals on graphs. Appl. Comput. Harmon. Anal. (2016)
C. Zhang, D. Florêncio, P.A. Chou, Graph signal processing-a probabilistic framework. Microsoft Research, Redmond, WA, USA, Technical report MSR-TR-2015-31 (2015)
J. Friedman, T. Hastie, R. Tibshirani, Sparse inverse covariance estimation with the graphical Lasso. Biostatistics 9(3), 432–441 (2008)
N. Meinshausen, P. Bühlmann et al., High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34(3), 1436–1462 (2006)
E. Pavez, A. Ortega, Generalized Laplacian precision matrix estimation for graph signal processing, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2016), pp. 6350–6354
M. Pourahmadi, Covariance estimation: the GLM and regularization perspectives. Stat. Sci. 369–387 (2011)
S. Epskamp, E.I. Fried, A tutorial on regularized partial correlation networks. Psychol. Methods (2018)
A. Das, A.L. Sampson, C. Lainscsek, L. Muller, W. Lin, J.C. Doyle, S.S. Cash, E. Halgren, T.J. Sejnowski, Interpretation of the precision matrix and its application in estimating sparse brain connectivity during sleep spindles from human electrocorticography recordings. Neural Comput. 29(3), 603–642 (2017)
X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, Learning Laplacian matrix in smooth graph signal representations. IEEE Trans. Signal Process. 64(23), 6160–6173 (2016)
C.-J. Hsieh, Sparse inverse covariance estimation for a million variables (2014)
X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, Learning graphs from signal observations under smoothness prior (2015), arXiv:1406.7842
M. Slawski, M. Hein, Estimation of positive definite m-matrices and structure learning for attractive Gaussian Markov random fields. Linear Algebra Appl. 473, 145–179 (2015)
S. Ubaru, J. Chen, Y. Saad, Fast estimation of tr(f(a)) via stochastic Lanczos quadrature. SIAM J. Matrix Anal. Appl. 38(4), 1075–1099 (2017)
T.S. Caetano, J.J. McAuley, L. Cheng, Q.V. Le, A.J. Smola, Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)
D. Thanou, D.I. Shuman, P. Frossard, Learning parametric dictionaries for signals on graphs. IEEE Trans. Signal Process. 62(15), 3849–3862 (2014)
E. Camponogara, L.F. Nazari, Models and algorithms for optimal piecewise-linear function approximation. Math. Probl. Eng. 2015 (2015)
T. Zhao, H. Liu, K. Roeder, J. Lafferty, L. Wasserman, The huge package for high-dimensional undirected graph estimation in R. J. Mach. Learn. Res. 13, 1059–1062 (2012)
Y. Yankelevsky, M. Elad, Dual graph regularized dictionary learning. IEEE Trans. Signal Inf. Process. Netw. 2(4), 611–624 (2016)
M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, D. Cai, Graph regularized sparse coding for image representation. IEEE Trans. Image Process. 20(5), 1327–1336 (2011)
S. Segarra, A.G. Marques, G. Mateos, A. Ribeiro, Blind identification of graph filters with multiple sparse inputs, in ICASSP (2016), pp. 4099–4103
R. Rustamov, L.J. Guibas, Wavelets on graphs via deep learning, in Advances in Neural Information Processing Systems (2013), pp. 998–1006
L. Stanković, M. Daković, T. Thayaparan, Time-Frequency Signal Analysis with Applications (Artech House, Boston, 2014)
I. Jestrović, J.L. Coyle, E. Sejdić, A fast algorithm for vertex-frequency representations of signals on graphs. Signal Process. 131, 483–491 (2017)
L. Stanković, M. Daković, E. Sejdić, Vertex-frequency analysis: a way to localize graph spectral components [lecture notes]. IEEE Signal Process. Mag. 34(4), 176–182 (2017)
L. Stanković, E. Sejdić, M. Daković, Vertex-frequency energy distributions. IEEE Signal Process. Lett. (2017)
L. Stanković, E. Sejdić, M. Daković, Reduced interference vertex-frequency distributions. IEEE Signal Process. Lett. (2018)
J. Lefèvre, D. Germanaud, J. Dubois, F. Rousseau, I. de Macedo Santos, H. Angleys, J.-F. Mangin, P.S. Hüppi, N. Girard, F. De Guio, Are developmental trajectories of cortical folding comparable between cross-sectional datasets of fetuses and preterm newborns? Cereb. Cortex 26(7), 3023–3035 (2015)
R.M. Rustamov, Average interpolating wavelets on point clouds and graphs (2011), arXiv:1110.2227
A. Golbabai, H. Rabiei, Hybrid shape parameter strategy for the RBF approximation of vibrating systems. Int. J. Comput. Math. 89(17), 2410–2427 (2012)
D.I. Shuman, C. Wiesmeyr, N. Holighaus, P. Vandergheynst, Spectrum-adapted tight graph wavelet and vertex-frequency frames. IEEE Trans. Signal Process. 63(16), 4223–4235 (2015)
D. Hammond, P. Vandergheynst, R. Gribonval, Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)
H. Behjat, N. Leonardi, L. Sörnmo, D. Van De Ville, Anatomically-adapted graph wavelets for improved group-level fMRI activation mapping. NeuroImage 123, 185–199 (2015)
I. Ram, M. Elad, I. Cohen, Redundant wavelets on graphs and high dimensional data clouds. IEEE Signal Process. Lett. 19(5), 291–294 (2012)
A. Sakiyama, K. Watanabe, Y. Tanaka, Spectral graph wavelets and filter banks with low approximation error. IEEE Trans. Signal Inf. Process. Netw. 2(3), 230–245 (2016)
T. Cioaca, B. Dumitrescu, M.-S. Stupariu, Graph-based wavelet representation of multi-variate terrain data. Comput. Graph. Forum 35(1), 44–58 (2016), Wiley Online Library
T. Cioaca, B. Dumitrescu, M.-S. Stupariu, Lazy wavelet simplification using scale-dependent dense geometric variability descriptors. J. Control Eng. Appl. Inform. 19(1), 15–26 (2017)
A. Dal Col, P. Valdivia, F. Petronetto, F. Dias, C.T. Silva, L.G. Nonato, Wavelet-based visual analysis of dynamic networks. IEEE Trans. Vis. Comput. Graph. (2017)
P. Valdivia, F. Dias, F. Petronetto, C.T. Silva, L.G. Nonato, Wavelet-based visualization of time-varying data on graphs, in 2015 IEEE Conference on Visual Analytics Science and Technology (VAST) (IEEE, 2015), pp. 1–8
Acknowledgements
Ervin Sejdić acknowledges the support of the NSF CAREER grant number 1652203.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Stanković, L., Daković, M., Sejdić, E. (2019). Introduction to Graph Signal Processing. In: Stanković, L., Sejdić, E. (eds) Vertex-Frequency Analysis of Graph Signals. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-03574-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-03574-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03573-0
Online ISBN: 978-3-030-03574-7
eBook Packages: EngineeringEngineering (R0)