Skip to main content

Introduction to Graph Signal Processing

  • Chapter
  • First Online:
Vertex-Frequency Analysis of Graph Signals

Abstract

Graph signal processing deals with signals whose domain, defined by a graph, is irregular. An overview of basic graph forms and definitions is presented first. Spectral analysis of graphs is discussed next. Some simple forms of processing signal on graphs, like filtering in the vertex and spectral domain, subsampling and interpolation, are given. Graph topologies are reviewed and analyzed as well. Theory is illustrated through examples, including few applications at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L.J. Grady, J.R. Polimeni, Discrete Calculus: Applied Analysis on Graphs for Computational Science (Springer Science & Business Media, New York, 2010)

    Google Scholar 

  2. S.S. Ray, Graph Theory with Algorithms and Its Applications: in Applied Science and Technology (Springer Science & Business Media, New York, 2012)

    Google Scholar 

  3. A. Marques, A. Ribeiro, S. Segarra, Graph signal processing: fundamentals and applications to diffusion processes, in International Conference on Acoustics, Speech, and Signal Processing, (ICASSP), 2017 (IEEE, 2017)

    Google Scholar 

  4. H. Krim, A.B. Hamza, Geometric Methods in Signal and Image Analysis (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  5. A. Bunse-Gerstner, W.B. Gragg, Singular value decompositions of complex symmetric matrices. J. Comput. Appl. Math. 21(1), 41–54 (1988)

    Article  MathSciNet  Google Scholar 

  6. D.S. Grebenkov, B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55(4), 601–667 (2013)

    Article  MathSciNet  Google Scholar 

  7. R. Bapat, The Laplacian matrix of a graph. Math. Stud.-India 65(1), 214–223 (1996)

    MathSciNet  MATH  Google Scholar 

  8. S. O’Rourke, V. Vu, K. Wang, Eigenvectors of random matrices: a survey. J. Comb. Theory Ser. A 144, 361–442 (2016)

    Article  MathSciNet  Google Scholar 

  9. K. Fujiwara, Eigenvalues of Laplacians on a closed Riemannian manifold and its nets. Proc. Am. Math. Soc. 123(8), 2585–2594 (1995)

    Article  MathSciNet  Google Scholar 

  10. S.U. Maheswari, B. Maheswari, Some properties of Cartesian product graphs of Cayley graphs with arithmetic graphs. Int. J. Comput. Appl. 138(3) (2016)

    Google Scholar 

  11. D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs: Theory and Application, vol. 87 (Academic, New York, 1980)

    Google Scholar 

  12. D.M. Cvetković, M. Doob, Developments in the theory of graph spectra. Linear Multilinear Algebra 18(2), 153–181 (1985)

    Article  MathSciNet  Google Scholar 

  13. D.M. Cvetković, I. Gutman, Selected topics on applications of graph spectra. Matematicki Institut SANU (2011)

    Google Scholar 

  14. A.E. Brouwer, W.H. Haemers, Spectra of Graphs (Springer Science & Business Media, New York, 2011)

    Google Scholar 

  15. F. Chung, Spectral Graph Theory (AMS, Providence, 1997)

    MATH  Google Scholar 

  16. O. Jones, Spectra of Simple Graphs, vol. 13 (Whitman College, Walla Walla, 2013)

    Google Scholar 

  17. D. Mejia, O. Ruiz-Salguero, C.A. Cadavid, Spectral-based mesh segmentation. Int. J. Interact. Des. Manuf. (IJIDeM) 11(3), 503–514 (2017)

    Article  Google Scholar 

  18. H. Lu, Z. Fu, X. Shu, Non-negative and sparse spectral clustering. Pattern Recognit. 47(1), 418–426 (2014)

    Article  Google Scholar 

  19. X. Dong, P. Frossard, P. Vandergheynst, N. Nefedov, Clustering with multi-layer graphs: a spectral perspective. IEEE Trans. Signal Process. 60(11), 5820–5831 (2012)

    Article  MathSciNet  Google Scholar 

  20. R. Horaud, A short tutorial on graph Laplacians, Laplacian embedding, and spectral clustering (2009)

    Google Scholar 

  21. R. Hamon, P. Borgnat, P. Flandrin, C. Robardet, Relabelling vertices according to the network structure by minimizing the cyclic bandwidth sum. J. Complex Netw. 4(4), 534–560 (2016)

    MathSciNet  Google Scholar 

  22. M. Masoumi, A.B. Hamza, Spectral shape classification: a deep learning approach. J. Vis. Commun. Image Represent. 43, 198–211 (2017)

    Article  Google Scholar 

  23. M. Masoumi, C. Li, A.B. Hamza, A spectral graph wavelet approach for nonrigid 3d shape retrieval. Pattern Recognit. Lett. 83, 339–348 (2016)

    Article  Google Scholar 

  24. J.M. Mouraaa, Graph signal processing, Cooperative and Graph Signal Processing (Elsevier, Amsterdam, 2018), pp. 239–259

    Google Scholar 

  25. M. Vetterli, J. Kovačević, V. Goyal, Foundations of Signal Processing (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  26. A. Sandryhaila, J.M. Moura, Discrete signal processing on graphs. IEEE Trans. Signal Process. 61(7), 1644–1656 (2013)

    Article  MathSciNet  Google Scholar 

  27. V.N. Ekambaram, Graph-Structured Data Viewed Through a Fourier Lens (University of California, Berkeley, 2014)

    Google Scholar 

  28. A. Sandryhaila, J.M. Moura, Discrete signal processing on graphs: frequency analysis. IEEE Trans. Signal Process. 62(12), 3042–3054 (2014)

    Article  MathSciNet  Google Scholar 

  29. A. Sandryhaila, J.M. Moura, Big data analysis with signal processing on graphs: representation and processing of massive data sets with irregular structure. IEEE Signal Process. Mag. 31(5), 80–90 (2014)

    Article  Google Scholar 

  30. D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  31. R. Hamon, P. Borgnat, P. Flandrin, C. Robardet, Extraction of temporal network structures from graph-based signals. IEEE Trans. Signal Inf. Process. Netw. 2(2), 215–226 (2016)

    Article  MathSciNet  Google Scholar 

  32. S. Chen, A. Sandryhaila, J.M. Moura, J. Kovačević, Signal denoising on graphs via graph filtering, in 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, 2014), pp. 872–876

    Google Scholar 

  33. A. Gavili, X.-P. Zhang, On the shift operator, graph frequency, and optimal filtering in graph signal processing. IEEE Trans. Signal Process. 65(23), 6303–6318 (2017)

    Article  MathSciNet  Google Scholar 

  34. A. Venkitaraman, S. Chatterjee, P. Händel, Hilbert transform, analytic signal, and modulation analysis for graph signal processing (2016), arXiv:1611.05269

  35. A. Agaskar, Y.M. Lu, A spectral graph uncertainty principle. IEEE Trans. Inf. Theory 59(7), 4338–4356 (2013)

    Article  MathSciNet  Google Scholar 

  36. X. Yan, B.M. Sadler, R.J. Drost, P.L. Yu, K. Lerman, Graph filters and the z-Laplacian. IEEE J. Sel. Top. Signal Process. 11, 774–784 (2017)

    Article  Google Scholar 

  37. X. Wang, J. Chen, Y. Gu, Local measurement and reconstruction for noisy bandlimited graph signals. Signal Process. 129, 119–129 (2016)

    Article  Google Scholar 

  38. S. Segarra, A. Ribeiro, Stability and continuity of centrality measures in weighted graphs. IEEE Trans. Signal Process. 64(3), 543–555 (2016)

    Article  MathSciNet  Google Scholar 

  39. D.I. Shuman, B. Ricaud, P. Vandergheynst, Vertex-frequency analysis on graphs. Appl. Comput. Harmon. Anal. 40(2), 260–291 (2016)

    Article  MathSciNet  Google Scholar 

  40. S. Chen, A. Sandryhaila, J. Kovačević, Sampling theory for graph signals, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2015), pp. 3392–3396

    Google Scholar 

  41. S. Chen, R. Varma, A. Sandryhaila, J. Kovačević, Discrete signal processing on graphs: sampling theory. IEEE Trans. Signal Process. 63(24), 6510–6523 (2015)

    Article  MathSciNet  Google Scholar 

  42. S. Chen, A. Sandryhaila, J.M. Moura, J. Kovačević, Signal recovery on graphs: variation minimization. IEEE Trans. Signal Process. 63(17), 4609–4624 (2015)

    Article  MathSciNet  Google Scholar 

  43. S. Chen, R. Varma, A. Singh, J. Kovačević, Signal recovery on graphs: fundamental limits of sampling strategies. IEEE Trans. Signal Inf. Process. Netw. 2(4), 539–554 (2016)

    MathSciNet  Google Scholar 

  44. M. Tsitsvero, S. Barbarossa, P. Di Lorenzo, Signals on graphs: uncertainty principle and sampling, IEEE Trans. Signal Process. (2016). https://doi.org/10.1109/TSP.2016.2573748

  45. X. Wang, P. Liu, Y. Gu, Local-set-based graph signal reconstruction. IEEE Trans. Signal Process. 63(9), 2432–2444 (2015)

    Article  MathSciNet  Google Scholar 

  46. L. Stanković, E. Sejdić, S. Stanković, M. Daković, I. Orović, A tutorial on sparse signal reconstruction and its applications in signal processing. Circuits Syst. Signal Process. 1–58 (2018)

    Google Scholar 

  47. L. Stanković, Digital signal processing with selected topics (2015)

    Google Scholar 

  48. S.K. Narang, A. Ortega, Downsampling graphs using spectral theory, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2011), pp. 4208–4211

    Google Scholar 

  49. H.Q. Nguyen, M.N. Do, Downsampling of signals on graphs via maximum spanning trees. IEEE Trans. Signal Process. 63(1), 182–191 (2015)

    Article  MathSciNet  Google Scholar 

  50. S.K. Narang, A. Ortega, Perfect reconstruction two-channel wavelet filter banks for graph structured data. IEEE Trans. Signal Process. 60(6), 2786–2799 (2012)

    Article  MathSciNet  Google Scholar 

  51. S. Segarra, A.G. Marques, G. Leus, A. Ribeiro, Interpolation of graph signals using shift-invariant graph filters, in EUSIPCO (2015), pp. 210–214

    Google Scholar 

  52. A.G. Marques, S. Segarra, G. Leus, A. Ribeiro, Sampling of graph signals with successive local aggregations. IEEE Trans. Signal Process. 64(7), 1832–1843 (2016)

    Article  MathSciNet  Google Scholar 

  53. A. Anis, A. Gadde, A. Ortega, Efficient sampling set selection for bandlimited graph signals using graph spectral proxies. IEEE Trans. Signal Process. 64(14), 3775–3789 (2016)

    Article  MathSciNet  Google Scholar 

  54. H. Behjat, U. Richter, D. Van De Ville, L. Sörnmo, Signal-adapted tight frames on graphs. IEEE Trans. Signal Process. 64(22), 6017–6029 (2016)

    Article  MathSciNet  Google Scholar 

  55. Y. Tanaka, A. Sakiyama, M-channel oversampled graph filter banks. IEEE Trans. Signal Process. 62(14), 3578–3590 (2014)

    Article  MathSciNet  Google Scholar 

  56. A. Sakiyama, Y. Tanaka, Oversampled graph Laplacian matrix for graph filter banks. IEEE Trans. Signal Process. 62(24), 6425–6437 (2014)

    Article  MathSciNet  Google Scholar 

  57. N. Tremblay, P. Borgnat, Subgraph-based filterbanks for graph signals. IEEE Trans. Signal Process. 64(15), 3827–3840 (2016)

    Article  MathSciNet  Google Scholar 

  58. J. Leskovec, C. Faloutsos, Sampling from large graphs, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2006), pp. 631–636

    Google Scholar 

  59. N. Perraudin, P. Vandergheynst, Stationary signal processing on graphs. IEEE Trans. Signal Process. 65(13), 3462–3477 (2017)

    Article  MathSciNet  Google Scholar 

  60. A.G. Marques, S. Segarra, G. Leus, A. Ribeiro, Stationary graph processes and spectral estimation. IEEE Trans. Signal Process. 65(22), 5911–5926 (2017)

    Article  MathSciNet  Google Scholar 

  61. A. Loukas, N. Perraudin, Stationary time-vertex signal processing (2016), arXiv:1611.00255

  62. S.P. Chepuri, G. Leus, Subsampling for graph power spectrum estimation, in Sensor Array and Multichannel Signal Processing Workshop (SAM), 2016 IEEE (IEEE, 2016), pp. 1–5

    Google Scholar 

  63. G. Puy, N. Tremblay, R. Gribonval, P. Vandergheynst, Random sampling of bandlimited signals on graphs. Appl. Comput. Harmon. Anal. (2016)

    Google Scholar 

  64. C. Zhang, D. Florêncio, P.A. Chou, Graph signal processing-a probabilistic framework. Microsoft Research, Redmond, WA, USA, Technical report MSR-TR-2015-31 (2015)

    Google Scholar 

  65. J. Friedman, T. Hastie, R. Tibshirani, Sparse inverse covariance estimation with the graphical Lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  66. N. Meinshausen, P. Bühlmann et al., High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34(3), 1436–1462 (2006)

    Article  MathSciNet  Google Scholar 

  67. E. Pavez, A. Ortega, Generalized Laplacian precision matrix estimation for graph signal processing, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2016), pp. 6350–6354

    Google Scholar 

  68. M. Pourahmadi, Covariance estimation: the GLM and regularization perspectives. Stat. Sci. 369–387 (2011)

    Google Scholar 

  69. S. Epskamp, E.I. Fried, A tutorial on regularized partial correlation networks. Psychol. Methods (2018)

    Google Scholar 

  70. A. Das, A.L. Sampson, C. Lainscsek, L. Muller, W. Lin, J.C. Doyle, S.S. Cash, E. Halgren, T.J. Sejnowski, Interpretation of the precision matrix and its application in estimating sparse brain connectivity during sleep spindles from human electrocorticography recordings. Neural Comput. 29(3), 603–642 (2017)

    Article  Google Scholar 

  71. X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, Learning Laplacian matrix in smooth graph signal representations. IEEE Trans. Signal Process. 64(23), 6160–6173 (2016)

    Article  MathSciNet  Google Scholar 

  72. C.-J. Hsieh, Sparse inverse covariance estimation for a million variables (2014)

    Google Scholar 

  73. X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, Learning graphs from signal observations under smoothness prior (2015), arXiv:1406.7842

  74. M. Slawski, M. Hein, Estimation of positive definite m-matrices and structure learning for attractive Gaussian Markov random fields. Linear Algebra Appl. 473, 145–179 (2015)

    Article  MathSciNet  Google Scholar 

  75. S. Ubaru, J. Chen, Y. Saad, Fast estimation of tr(f(a)) via stochastic Lanczos quadrature. SIAM J. Matrix Anal. Appl. 38(4), 1075–1099 (2017)

    Article  MathSciNet  Google Scholar 

  76. T.S. Caetano, J.J. McAuley, L. Cheng, Q.V. Le, A.J. Smola, Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)

    Article  Google Scholar 

  77. D. Thanou, D.I. Shuman, P. Frossard, Learning parametric dictionaries for signals on graphs. IEEE Trans. Signal Process. 62(15), 3849–3862 (2014)

    Article  MathSciNet  Google Scholar 

  78. E. Camponogara, L.F. Nazari, Models and algorithms for optimal piecewise-linear function approximation. Math. Probl. Eng. 2015 (2015)

    Google Scholar 

  79. T. Zhao, H. Liu, K. Roeder, J. Lafferty, L. Wasserman, The huge package for high-dimensional undirected graph estimation in R. J. Mach. Learn. Res. 13, 1059–1062 (2012)

    Google Scholar 

  80. Y. Yankelevsky, M. Elad, Dual graph regularized dictionary learning. IEEE Trans. Signal Inf. Process. Netw. 2(4), 611–624 (2016)

    Article  MathSciNet  Google Scholar 

  81. M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, D. Cai, Graph regularized sparse coding for image representation. IEEE Trans. Image Process. 20(5), 1327–1336 (2011)

    Article  MathSciNet  Google Scholar 

  82. S. Segarra, A.G. Marques, G. Mateos, A. Ribeiro, Blind identification of graph filters with multiple sparse inputs, in ICASSP (2016), pp. 4099–4103

    Google Scholar 

  83. R. Rustamov, L.J. Guibas, Wavelets on graphs via deep learning, in Advances in Neural Information Processing Systems (2013), pp. 998–1006

    Google Scholar 

  84. L. Stanković, M. Daković, T. Thayaparan, Time-Frequency Signal Analysis with Applications (Artech House, Boston, 2014)

    Google Scholar 

  85. I. Jestrović, J.L. Coyle, E. Sejdić, A fast algorithm for vertex-frequency representations of signals on graphs. Signal Process. 131, 483–491 (2017)

    Article  Google Scholar 

  86. L. Stanković, M. Daković, E. Sejdić, Vertex-frequency analysis: a way to localize graph spectral components [lecture notes]. IEEE Signal Process. Mag. 34(4), 176–182 (2017)

    Article  Google Scholar 

  87. L. Stanković, E. Sejdić, M. Daković, Vertex-frequency energy distributions. IEEE Signal Process. Lett. (2017)

    Google Scholar 

  88. L. Stanković, E. Sejdić, M. Daković, Reduced interference vertex-frequency distributions. IEEE Signal Process. Lett. (2018)

    Google Scholar 

  89. J. Lefèvre, D. Germanaud, J. Dubois, F. Rousseau, I. de Macedo Santos, H. Angleys, J.-F. Mangin, P.S. Hüppi, N. Girard, F. De Guio, Are developmental trajectories of cortical folding comparable between cross-sectional datasets of fetuses and preterm newborns? Cereb. Cortex 26(7), 3023–3035 (2015)

    Google Scholar 

  90. R.M. Rustamov, Average interpolating wavelets on point clouds and graphs (2011), arXiv:1110.2227

  91. A. Golbabai, H. Rabiei, Hybrid shape parameter strategy for the RBF approximation of vibrating systems. Int. J. Comput. Math. 89(17), 2410–2427 (2012)

    Article  MathSciNet  Google Scholar 

  92. D.I. Shuman, C. Wiesmeyr, N. Holighaus, P. Vandergheynst, Spectrum-adapted tight graph wavelet and vertex-frequency frames. IEEE Trans. Signal Process. 63(16), 4223–4235 (2015)

    Article  MathSciNet  Google Scholar 

  93. D. Hammond, P. Vandergheynst, R. Gribonval, Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  94. H. Behjat, N. Leonardi, L. Sörnmo, D. Van De Ville, Anatomically-adapted graph wavelets for improved group-level fMRI activation mapping. NeuroImage 123, 185–199 (2015)

    Article  Google Scholar 

  95. I. Ram, M. Elad, I. Cohen, Redundant wavelets on graphs and high dimensional data clouds. IEEE Signal Process. Lett. 19(5), 291–294 (2012)

    Article  Google Scholar 

  96. A. Sakiyama, K. Watanabe, Y. Tanaka, Spectral graph wavelets and filter banks with low approximation error. IEEE Trans. Signal Inf. Process. Netw. 2(3), 230–245 (2016)

    Article  MathSciNet  Google Scholar 

  97. T. Cioaca, B. Dumitrescu, M.-S. Stupariu, Graph-based wavelet representation of multi-variate terrain data. Comput. Graph. Forum 35(1), 44–58 (2016), Wiley Online Library

    Google Scholar 

  98. T. Cioaca, B. Dumitrescu, M.-S. Stupariu, Lazy wavelet simplification using scale-dependent dense geometric variability descriptors. J. Control Eng. Appl. Inform. 19(1), 15–26 (2017)

    Google Scholar 

  99. A. Dal Col, P. Valdivia, F. Petronetto, F. Dias, C.T. Silva, L.G. Nonato, Wavelet-based visual analysis of dynamic networks. IEEE Trans. Vis. Comput. Graph. (2017)

    Google Scholar 

  100. P. Valdivia, F. Dias, F. Petronetto, C.T. Silva, L.G. Nonato, Wavelet-based visualization of time-varying data on graphs, in 2015 IEEE Conference on Visual Analytics Science and Technology (VAST) (IEEE, 2015), pp. 1–8

    Google Scholar 

Download references

Acknowledgements

Ervin Sejdić acknowledges the support of the NSF CAREER grant number 1652203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubiša Stanković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stanković, L., Daković, M., Sejdić, E. (2019). Introduction to Graph Signal Processing. In: Stanković, L., Sejdić, E. (eds) Vertex-Frequency Analysis of Graph Signals. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-03574-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03574-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03573-0

  • Online ISBN: 978-3-030-03574-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics