Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In recent years, the development of novel technological platforms for the study of biosystems has allowed for reaching extreme sensitivity and gaining deep insight in the physical mechanisms at the basis of biophysical processes. Interesting results have been obtained with imaging techniques as well as in the development of refined approaches for biosystem manipulation and control like microfluidic devices, optical tweezers, etc. Among these novel tools, innovative spectroscopic techniques enable probing specific biomolecules and investigating their composition, structural properties, location and interaction with other elements also in complex environments, as inside a cell. For approaching complex biophysical problems, it is crucial to push the limits of our investigation down to the single cell and single molecule level. To this aim, ultrasensitive and molecular specific spectroscopic techniques as Surface Enhanced Raman Scattering (SERS) can be successfully employed. Here we briefly discuss the state of the art of the field and the content of this Thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abeel T, Helleputte T et al (2010) Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3):392–398. ISSN: 1460-2059

    Google Scholar 

  2. Ando J, Fujita K et al (2011) Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano lett 11(12):5344–5348

    Article  ADS  Google Scholar 

  3. Arenas JF, Woolley MS et al (2000) Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states. J Chem Phys 112(17):7669–7683

    Article  ADS  Google Scholar 

  4. Ausman LK, Li S et al (2012) Structural effects in the electromagnetic enhancement mechanism of surface-enhanced Raman scattering: dipole reradiation and rectangular symmetry effects for nanoparticle arrays. J Phys Chem C 116(33):17318–17327

    Article  Google Scholar 

  5. Baumberg J, Bell S et al (2017) SERS in biology/biomedical SERS: general discussion. Faraday Discuss 205:429–456

    Article  ADS  Google Scholar 

  6. Benz F, Schmidt MK et al (2016) Single-molecule optomechanics in "picocavities". Science 354(6313):726–729

    Article  ADS  Google Scholar 

  7. Brasili F, Mazzi E et al (2015) Gold nanoparticle cluster arrays for advanced optical sensing: an AFM study. In: 2015 IEEE 15th international conference on nanotechnology (IEEE-NANO). IEEE, pp 1023–1028

    Google Scholar 

  8. Colthup N, Daly LH et al (1975) Introduction to infrared and Raman spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  9. Deniz AA, Mukhopadhyay S et al (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 5(18):15–45. ISSN: 1742-5689

    Google Scholar 

  10. Doecke JD, Laws SM et al (2012) Blood-based protein biomarkers for diagnosis of alzheimer disease. Arch Neurol 69(10):1318. ISSN: 0003-9942

    Article  Google Scholar 

  11. Domenici F, Bizzarri AR et al (2011) SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. Int J Nanomed 6:2033–2042

    Google Scholar 

  12. Domenici F, Fasolato C et al (2016) Engineering microscale two-dimensional gold nanoparticle cluster arrays for advanced Raman sensing: an AFM study. Colloids Surf A: Physicochem Eng Asp 498:168–175

    Article  Google Scholar 

  13. Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131(8):875. ISSN: 0003-2654

    Article  ADS  Google Scholar 

  14. El-Agnaf OMA, Salem SA et al (2006) Detection of oligomeric forms of a- synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 20(3):419–425. ISSN: 0892-6638

    Google Scholar 

  15. Etzkorn T, Klotz B et al (1999) Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges. Atmos Environ 33(4):525–540

    Article  ADS  Google Scholar 

  16. Fang Y, Seong N-H et al (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321(5887):388–392

    Article  ADS  Google Scholar 

  17. Fasolato C, Domenici F et al (2014) Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters. Appl Phys Lett 105(7):073105

    Article  ADS  Google Scholar 

  18. Fasolato C, Domenici F et al (2015) Self-assembled nanoparticle aggregates: organizing disorder for high performance surface-enhanced spectroscopy. In: Nanoforum 2014, vol 1667. AIP Publishing, pp 020012

    Google Scholar 

  19. Fasolato C, Giantulli S et al (2016) Folate-based single cell screening using surface enhanced Raman microimaging. Nanoscale 8(39):17304–17313

    Article  Google Scholar 

  20. Fasolato C, Giantulli S et al (2018) Antifolate functionalized nanovectors: SERS investigation motivates effective theranostics. In preparation

    Google Scholar 

  21. Galler K, Bräutigam K et al (2014) Making a big thing of a small cell-recent advances in single cell analysis. Analyst 139(6):1237–1273

    Article  ADS  Google Scholar 

  22. Giliberti V, Baldassarre L et al (2016) Protein clustering in chemically stressed HeLa cells studied by infrared nanospectroscopy. Nanoscale 8(40):17560–17567. ISSN: 2040-3364

    Article  Google Scholar 

  23. Graham D, Goodacre R et al (2017) Theory of SERS enhancement: general discussion. Faraday Discuss 205:173–211

    Article  ADS  Google Scholar 

  24. Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816. ISSN: 0028-0836

    Google Scholar 

  25. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940. ISSN: 1548-7091

    Google Scholar 

  26. Huang B, Bates M et al (2009) Super-resolution fluorescence microscopy. Ann Rev. Biochem 78(1):993–1016. ISSN: 0066-4154

    Google Scholar 

  27. Kelemen LE (2006) The role of folate receptor a in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119(2):243–250

    Article  Google Scholar 

  28. Kneipp K, Wang Y et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667

    Article  ADS  Google Scholar 

  29. Kneipp J (2017) Interrogating cells, tissues, and live animals with new generations of surface-enhanced Raman scattering probes and labels. ACS Nano 11(2):1136–1141

    Article  Google Scholar 

  30. Krüger J, Singh K et al (2002) Development of a microfluidic device for fluorescence activated cell sorting. J Micromech Microeng 12(4):486

    Article  Google Scholar 

  31. Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112(14):5605–5617

    Article  Google Scholar 

  32. Lombardi JR, Birke RL et al (1986) Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J Chem Phys 84(8):4174–4180

    Article  ADS  Google Scholar 

  33. Moskovits M (2013) Persistent misconceptions regarding SERS. Phys Chem Chem Phys 15(15):5301–5311

    Article  Google Scholar 

  34. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  Google Scholar 

  35. Osawa M, Matsuda N et al (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem 98(48):12702–12707

    Article  Google Scholar 

  36. Pieczonka NPW, Aroca RF (2008) Single molecule analysis by surface-enhanced Raman scattering. Chem Soc Rev 37(5):946–954

    Article  Google Scholar 

  37. Pallaoro A, Hoonejani MR et al (2015) Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9(4):4328–4336

    Article  Google Scholar 

  38. Parker N, Turk MJ et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

    Article  Google Scholar 

  39. Pepe MS, Etzioni R et al (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93(14):1054–1061

    Article  Google Scholar 

  40. Qian X, Peng X-H et al (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83

    Article  Google Scholar 

  41. Rodrigo D, Limaj O et al (2015) Mid-infrared plasmonic biosensing with graphene. Science 349(6244):165–168

    Article  ADS  Google Scholar 

  42. Schomacker KT, Delaney JK et al (1986) Measurements of the absolute Raman cross sections of benzene. J Chem Phys 85(8):4240–4247

    Article  ADS  Google Scholar 

  43. Schatz GC, Young MA et al (2006) Electromagnetic mechanism of SERS. Surface-enhanced Raman scattering. Springer, pp 19–45

    Google Scholar 

  44. Schlücker S (2014) Surface-Enhanced raman spectroscopy: concepts and chemical applications. Angewandte Chemie International Edition 53(19):4756–4795

    Article  Google Scholar 

  45. Stiles PL, Dieringer JA et al (2008) Surface-enhanced Raman spectroscopy. Ann Rev Anal Chem 1:601–626

    Article  Google Scholar 

  46. Strehle KR, Cialla D et al (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547

    Article  Google Scholar 

  47. Suto M, Wang X et al (1992) Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106–295 nm. J Quant Spectrosc Radiat Transf 48(1):79–89

    Article  ADS  Google Scholar 

  48. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576. ISSN: 0173-0835

    Google Scholar 

  49. Vo-Dinh T, Wang H-N et al (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102

    Google Scholar 

  50. Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in ’omics’. Trends Biotechnol 28(6):281–290. ISSN: 0167-7799

    Google Scholar 

  51. Wu L, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44(10):2963–2997. ISSN: 0306-0012

    Google Scholar 

  52. Xu H, Bjerneld EJ et al (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83(21):4357

    Article  ADS  Google Scholar 

  53. K-i Yoshida, Itoh T et al (2010) Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures. Phys Rev B 81(11):115406

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Fasolato .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fasolato, C. (2018). Introduction. In: Surface Enhanced Raman Spectroscopy for Biophysical Applications. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03556-3_1

Download citation

Publish with us

Policies and ethics