Skip to main content

AuCu Nanoparticles Applied on Heterogeneous Catalysis: Studies About the Stability of Nanoparticles Under Redox Pre-treatments and Application in CO Oxidation Reaction

  • Chapter
  • First Online:
  • 440 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Catalysis is an important area of great scientific and economic interest and in order to better understand the processes involved became essential the use of model catalysts with well defined properties. This Chapter presents AuCu nanoparticles with well defined size and composition supported and applied in the CO oxidation reaction. The results have proved the fundamental effect of the support as a driving force that leads to the formation of different types of metal-oxide interface, aspects that may be extremely relevant for catalysis and other areas where a well-defined interface is required.

* The content of this chapter is adapted with permission from the articles entitled “AuCu alloy nanoparticles supported on SiO2: Impact of redox pretreatments in the catalyst performance in CO oxidation”* and “The Crucial Role of the Support in the Transformations of Bimetallic Nanoparticles and Catalytic Performance**.

References:

Destro, P.; Marras, S.; Manna, L.; Colombo, M.; and Zanchet, D. Cat.Tod.,2017, 282, 105-110. Copyright (2018) by Elsevier. Reproduced with permission.

**Destro, P.; Kokumai, T.M.; Scarpellini, A.; Pasquale, L.; Manna, L.; Colombo, M. and Zanchet, D. ACS Catal. 2018, 8, 1031-1037. Copyright (2018) by American Chemical Society. Reproduced with permission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Johnston RL (2012) Metal nanoparticles and nanoalloys. In: Frontiers of nanoscience, 1st edn. Elsevier Ltd, pp 1–42

    Google Scholar 

  2. Somorjai GA, Park JY (2008) Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Topics Catal 49:126–135. https://doi.org/10.1007/s11244-008-9077-0

    Article  CAS  Google Scholar 

  3. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676. https://doi.org/10.1021/jp051066p

    Article  CAS  PubMed  Google Scholar 

  4. Narayanan R, El-Sayed MA (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343–1348. https://doi.org/10.1021/nl0495256

    Article  CAS  Google Scholar 

  5. Prieto PJS, Ferreira AP, Haddad PS et al (2010) Designing Pt nanoparticles supported on CeO2-Al2O3: Synthesis, characterization and catalytic properties in the steam reforming and partial oxidation of methane. J Catal 276:351–359. https://doi.org/10.1016/j.jcat.2010.09.025

    Article  CAS  Google Scholar 

  6. Ribeiro RU, Liberatori JWC, Winnishofer H et al (2009) Colloidal Co nanoparticles supported on SiO2: synthesis, characterization and catalytic properties for steam reforming of ethanol. Appl Catal B Environ 91:670–678. https://doi.org/10.1016/j.apcatb.2009.07.009

    Article  CAS  Google Scholar 

  7. Bonnemann H, Richards RM (2001) Nanoscopic metal particles—synthetic methods and potential applications. Eur J Inorg Chem 2455–2480. https://doi.org/10.1002/1099-0682

  8. Mourdikoudis S, Liz-Marzán LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25:1465–1476

    Article  CAS  Google Scholar 

  9. Jia C-J, Schüth F (2011) Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys PCCP 13:2457–2487. https://doi.org/10.1039/c0cp02680h

    Article  CAS  PubMed  Google Scholar 

  10. Somorjai GA, Tao F, Park JY (2008) The nanoscience revolution: merging of colloid science, catalysis and nanoelectronics. Topics Catal 47:1–14. https://doi.org/10.1007/s11244-007-9028-1

    Article  CAS  Google Scholar 

  11. Sun S, Murray CB, Weller D et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992. https://doi.org/10.1126/science.287.5460.1989

    Article  CAS  PubMed  Google Scholar 

  12. Tao FF, Schneider WF, Kamat PV (2014) Chemical synthesis of nanoscale heterogeneous catalysis. In: Heterogeneous catalysis at the nanoscale for energy applications, pp 9–29

    Google Scholar 

  13. Sonström P, Bäumer M (2011) Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts. Phys Chem Chem Phys 13:19270–19284. https://doi.org/10.1039/c1cp22048a

    Article  CAS  PubMed  Google Scholar 

  14. Pushkarev VV, Zhu Z, An K et al (2012) Monodisperse metal nanoparticle catalysts: synthesis, characterizations, and molecular studies under reaction conditions. Topics Catal 55:1257–1275. https://doi.org/10.1007/s11244-012-9915-y

    Article  CAS  Google Scholar 

  15. Munnik P, de Jongh PE, de Jong KP (2015) Recent developments in the synthesis of supported catalysts. Chemical reviews. https://doi.org/10.1021/cr500486u

    Article  CAS  PubMed  Google Scholar 

  16. Na K, Zhang Q, Somorjai GA (2014) Colloidal metal nanocatalysts: synthesis, characterization, and catalytic applications. J Clust Sci 25:83–114. https://doi.org/10.1007/s10876-013-0636-6

    Article  CAS  Google Scholar 

  17. Li D, Wang C, Tripkovic D et al (2012) Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. ACS Catal 2:1358–1362. https://doi.org/10.1021/cs300219j

    Article  CAS  Google Scholar 

  18. Blavo SO, Qayyum E, Baldyga LM et al (2013) Verification of organic capping agent removal from supported colloidal synthesized pt nanoparticle catalysts. Topics Catal 56:1835–1842. https://doi.org/10.1007/s11244-013-0120-4

    Article  CAS  Google Scholar 

  19. Huang W, Hua Q, Cao T (2014) Influence and removal of capping ligands on catalytic colloidal nanoparticles. Catal Lett 144:1355–1369. https://doi.org/10.1007/s10562-014-1306-5

    Article  CAS  Google Scholar 

  20. Niu Z, Li Y (2014) Removal and utilization of capping agents in nanocatalysis. Chem Mater 26:72–83. https://doi.org/10.1021/cm4022479

    Article  CAS  Google Scholar 

  21. Lopez-sanchez JA, Dimitratos N, Hammond C et al (2011) Facile removal of stabiliser-ligands from supported gold nanoparticles, pp 27–59. https://doi.org/10.1038/nchem.1066

    Article  CAS  PubMed  Google Scholar 

  22. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60. https://doi.org/10.1016/S0926-860X(00)00843-7

    Article  CAS  Google Scholar 

  23. Gracia FJ, Miller JT, Kropf AJ, Wolf EE (2002) Kinetics, FTIR, and controlled atmosphere EXAFS study of the effect of chlorine on Pt-supported catalysts during oxidation reactions. J Catal 209:341–354. https://doi.org/10.1006/jcat.2002.3601

    Article  CAS  Google Scholar 

  24. Oh HS, Yang JH, Costello CK et al (2002) Selective catalytic oxidation of CO: effect of chloride on supported Au catalysts. J Catal 210:375–386. https://doi.org/10.1006/jcat.2002.3710

    Article  CAS  Google Scholar 

  25. Dai S, You Y, Zhang S et al (2017) In situ atomic-scale observation of oxygen driven core-shell formation in Pt3Co nanoparticles. Nat Commun 8:204. https://doi.org/10.1038/s41467-017-00161-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mayrhofer KJJ, Juhart V, Hartl K et al (2009) Adsorbate-induced surface segregation for core-shell nanocatalysts. Angew Chem 48:3529–3531. https://doi.org/10.1002/anie.200806209

    Article  CAS  Google Scholar 

  27. Kitchin JR, Reuter K, Scheffler M (2008) Alloy surface segregation in reactive environments: first-principles atomistic thermodynamics study of Ag3 Pd(111) in oxygen atmospheres. Phys Rev B 77:1–12. https://doi.org/10.1103/PhysRevB.77.075437

    Article  CAS  Google Scholar 

  28. Dai S, Hou Y, Onoue M et al (2017) Revealing surface elemental composition and dynamic processes involved in facet-dependent oxidation of Pt3CO nanoparticles via in situ transmission electron microscopy. Nano Lett 17:4683–4688. https://doi.org/10.1021/acs.nanolett.7b01325

    Article  CAS  PubMed  Google Scholar 

  29. Zhan W, Wang J, Wang H et al (2017) Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J Am Chem Soc 139:8846–8854. https://doi.org/10.1021/jacs.7b01784

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Chen Q, McCue I et al (2014) Dealloying of noble-metal alloy nanoparticles. Nano Lett 14:2569–2577. https://doi.org/10.1021/nl500377g

    Article  CAS  PubMed  Google Scholar 

  31. Nassiri H, Lee KE, Hu Y et al (2017) Water shifts PdO-catalyzed lean methane combustion to Pt-catalyzed rich combustion in Pd–Pt catalysts: In situ X-ray absorption spectroscopy. J Catal 352:649–656. https://doi.org/10.1016/j.jcat.2017.06.008

    Article  CAS  Google Scholar 

  32. Liu X, Wang A, Li L et al (2011) Structural changes of Au-Cu bimetallic catalysts in CO oxidation: in situ XRD, EPR, XANES, and FT-IR characterizations. J Catal 278:288–296. https://doi.org/10.1016/j.jcat.2010.12.016

    Article  CAS  Google Scholar 

  33. Yin J, Shan S, Yang L et al (2012) Gold-Copper nanoparticles: nanostructural evolution and bifunctional catalytic sites. Chem Mater 24:4662–4674. https://doi.org/10.1021/cm302097c

    Article  CAS  Google Scholar 

  34. Abad A, Almela C, Corma A, García H (2006) Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts. Tetrahedron 62:6666–6672. https://doi.org/10.1016/j.tet.2006.01.118

    Article  CAS  Google Scholar 

  35. Prieto PJS, Ferreira AP, Haddad PS et al (2010) Designing Pt nanoparticles supported on CeO2-Al2O3: synthesis, characterization and catalytic properties in the steam reforming and partial oxidation of methane. J Catal 276:351–359. https://doi.org/10.1016/j.jcat.2010.09.025

    Article  CAS  Google Scholar 

  36. Bauer JC, Mullins DR, Oyola Y et al (2013) Structure activity relationships of silica supported AuCu and AuCuPd alloy catalysts for the oxidation of CO. Catal Lett. https://doi.org/10.1007/s10562-013-1075-6

    Article  CAS  Google Scholar 

  37. Comotti M, Li W-C, Spliethoff B, Schüth F (2005) Support effect in high activity gold catalysts for CO oxidation. J Am Chem Soc 128:917–924. https://doi.org/10.1021/ja0561441

    Article  CAS  Google Scholar 

  38. Baldizzone C, Gan L, Hodnik N et al (2015) Stability of dealloyed porous Pt/Ni nanoparticles. ACS Catal 5000–5007. https://doi.org/10.1021/acscatal.5b01151

    Article  CAS  Google Scholar 

  39. Divins NJ, Angurell I, Escudero C et al (2014) Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 346:620–623. https://doi.org/10.1126/science.1258106

    Article  CAS  PubMed  Google Scholar 

  40. Yang L, Shan S, Loukrakpam R et al (2012) Role of support-nanoalloy interactions in the atomic-scale structural and chemical ordering for tuning catalytic sites. J Am Chem Soc 134:15048–15060. https://doi.org/10.1021/ja3060035

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Kim HY, Henkelman G (2013) CO oxidation at the Au–Cu interface of bimetallic nanoclusters supported on CeO2(111). J Phys Chem Lett 4:2943–2947. https://doi.org/10.1021/jz401524d

    Article  CAS  Google Scholar 

  42. Guisbiers G, Mejia-Rosales S, Khanal S et al (2014) Gold–Copper nano-alloy, “Tumbaga”, in the era of nano: phase diagram and segregation. Nano Lett 14:6718–6726. https://doi.org/10.1021/nl503584q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Okamoto H, Chakrabarti DJ, Laughlin DE, Massalski TB (1987) The Au-Cu (Gold-Copper) system. Bull Alloy Phase Diagr 454–473

    Article  CAS  Google Scholar 

  44. Oh HS, Yang JH, Costello CK et al (2002) Selective catalytic oxidation of CO: effect of chloride on supported Au catalysts. J Catal 210:375–386. https://doi.org/10.1006/jcat.2002.3710

    Article  CAS  Google Scholar 

  45. Broqvist P, Molina LM, Grönbeck H, Hammer B (2004) Promoting and poisoning effects of Na and Cl coadsorption on CO oxidation over MgO-supported Au nanoparticles. J Catal 227:217–226. https://doi.org/10.1016/j.jcat.2004.07.009

    Article  CAS  Google Scholar 

  46. Cant NW, Angove DE, Patterson JM (1998) The effects of residual chlorine on the behaviour of platinum group metals for oxidation of different hydrocarbons. Catal Today 44:93–99. https://doi.org/10.1016/s0920-5861(98)00177-1

    Article  CAS  Google Scholar 

  47. Kim S-I, Eom G, Kang M et al (2015) Composition-selective fabrication of ordered intermetallic Au–Cu nanowires and their application to nano-size electrochemical glucose detection. Nanotechnology 26:245702. https://doi.org/10.1088/0957-4484/26/24/245702

    Article  CAS  PubMed  Google Scholar 

  48. Najafishirtari S, Brescia R, Guardia P et al (2015) Nanoscale transformations of alumina-supported AuCu ordered phase nanocrystals and their activity in CO oxidation. ACS Catal 5:2154–2163. https://doi.org/10.1021/cs501923x

    Article  CAS  Google Scholar 

  49. Bauer JC, Mullins D, Li M et al (2011) Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. Phys Chem Chem Phys PCCP 13:2571–2581. https://doi.org/10.1039/c0cp01859g

    Article  CAS  PubMed  Google Scholar 

  50. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. https://doi.org/10.1107/S0909049505012719

    Article  CAS  PubMed  Google Scholar 

  51. Grunes LA (1983) Study of the K edges of 3d transition metals in pure and oxide form by X-ray-absorption spectroscopy. Phys Rev B 27:2111–2131. https://doi.org/10.1103/PhysRevB.27.2111

    Article  CAS  Google Scholar 

  52. Kuhn M, Sham TK (1994) Charge redistribution and electronic behavior in a series of Au-Cu alloys. Phys Rev B 49:1647–1661

    Article  CAS  Google Scholar 

  53. Kim HY, Henkelman G (2013) CO oxidation at the interface of au nanoclusters and the stepped-CeO2(111) surface by the Mars-van Krevelen mechanism. J Phys Chem Lett 4:216–221. https://doi.org/10.1021/jz301778b

    Article  CAS  PubMed  Google Scholar 

  54. Liu D, Zhu YF, Jiang Q (2015) DFT study of CO oxidation on Cu2O–Au interfaces at Au–Cu Alloy surfaces. RSC Adv 5:1587–1597. https://doi.org/10.1039/C4RA10881G

    Article  CAS  Google Scholar 

  55. Vecchietti J, Bonivardi A, Xu W et al (2014) Understanding the role of oxygen vacancies in the water gas shift reaction on ceria-supported platinum catalysts. ACS Catal 4:2088–2096. https://doi.org/10.1021/cs500323u

    Article  CAS  Google Scholar 

  56. Cargnello M, Doan-Nguyen VVT, Gordon TR et al (2013) Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science (New York, NY) 341:771–773. https://doi.org/10.1126/science.1240148

    Article  CAS  Google Scholar 

  57. Flynn PC, Wanke SE (1974) A model of supported metal catalyst sintering. II. Application of model. J Catal 34:400–410. https://doi.org/10.1016/0021-9517(74)90053-0

    Article  CAS  Google Scholar 

  58. Hansen TW, Delariva AT, Challa SR, Datye AK (2013) Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc Chem Res 46:1720–1730. https://doi.org/10.1021/ar3002427

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila Destro .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Destro, P. (2019). AuCu Nanoparticles Applied on Heterogeneous Catalysis: Studies About the Stability of Nanoparticles Under Redox Pre-treatments and Application in CO Oxidation Reaction. In: Colloidal Nanoparticles for Heterogeneous Catalysis. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03550-1_3

Download citation

Publish with us

Policies and ethics