Abstract
In the next decade, mobile traffic will supposedly increase a thousand-fold compared with what we are currently using owing to the addition of IoT devices, immense multimedia data circulation, and automated devices such as driverless cars. To fulfill the ongoing growth, the next-generation cellular network should able to accommodate this size in its service span. At the same time, the low-latency, high-span service is becoming a necessity of today’s devices. To accomplish the future demand, large-scale network adaptation requires next-generation cellular infrastructure, known as fifth generation (5G). In this chapter, we discuss how these requirements can be achieved over the next 10 years. We have covered the techniques that we presume to have a good possibility of being adopted in next-generation 5G networks. The proposed technology has been described in several texts and accepted in many technical recommendation reports. It is observed that large-capacity growth can only be possible with major architectural adoption in cellular and wireless network technology. This chapter provides insights into the evolution of cellular technology and can be used as a guideline for technology development toward 5G.
Keywords
- Internet of things
- Fifth generation
- Cross layer design
- Software define network
- Network function virtualization
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
J.C. Lin, Synchronization requirements for 5G: an overview of standards or specifications for cellular networks. IEEE Veh. Technol. Mag. 13, 1–1 (2018)
S.K. Biswash, D.N.K. Jayakody, Performance based user-centric dynamic mode switching and mobility management scheme for 5G networks. J. Netw. Comput. Appl. 116, 24–34 (2018)
S.A. Hassan, M.S. Omar, M.A. Imran, J. Qadir, D.N.K. Jayako, Universal access in 5G networks, potential challenges and opportunities for urban and rural environments, in 5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management, ed. by A. Al-Dulaimi, X. Wang, I. Chih-Lin (Wiley, Hoboken, 2018)
M. Agiwal, A. Roy, N. Saxena, Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 18(3), 1617–1655 thirdquarter (2016)
Huawei, 5G network architecture – a high-level perspective. (2016) http://www.huawei.com/en/industry-insights/mbb-2020/trends-insights/5g-network-architecture
P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S.A. Ashraf, B. Almeroth, J. Voigt, I. Riedel et al., Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture. IEEE Commun. Mag. 55(2), 70–78 (2017)
P.K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, A. Benjebbour, Design considerations for a 5G network architecture. IEEE Commun. Mag. 52(11), 65–75 (2014)
S.B.H. Said, M.R. Sama, K. Guillouard, L. Suciu, G. Simon, X. Lagrange, J.-M. Bonnin, New control plane in 3GPP LTE/EPC architecture for on-demand connectivity service, in 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet) (IEEE, 2013), pp. 205–209
Z. Wang, W. Zhang, A separation architecture for achieving energy-efficient cellular networking. IEEE Trans. Wirel. Commun. 13(6), 3113–3123 (2014)
C.J. Bernardos, A.D.L. Oliva, P. Serrano, A. Banchs, L.M. Contreras, H. Jin, J.C. Zúñiga, An architecture for software defined wireless networking. IEEE Wirel. Commun. 21(3), 52–61 (2014)
J. Costa-Requena, SDN integration in LTE mobile backhaul networks, in 2014 International Conference on Information Networking (ICOIN) (IEEE, 2014), pp. 264–269
Z. Ma, Z. Zhang, Z. Ding, P. Fan, H. Li, Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci. China Inf. Sci. 58(4), 1–20 (2015)
S.M.R. Islam, N. Avazov, O.A. Dobre, K.-S. Kwak, Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutorials 19(2), 721–742 (2017)
S. Qureshi, S.A. Hassan, D.N.K. Jayakody, Divide-and-allocate: an uplink successive bandwidth division NOMA system. Trans. Emerg. Telecommun. Technol. 29(1), e3216 (2017)
B. Yi, X. Wang, K. Li, M. Huang et al., A comprehensive survey of network function virtualization. Comput. Netw. 133, 212–262 2018
S.M. Islam, M. Zeng, O.A. Dobre, NOMA in 5G systems: exciting possibilities for enhancing spectral efficiency (2017). arXiv preprint:1706.08215
T.L. Marzetta, Massive MIMO: an introduction. Bell Labs Tech. J. 20, 11–22 (2015)
Y. Niu, Y. Li, D. Jin, L. Su, A.V. Vasilakos, A survey of millimeter wave communications (mmwave) for 5G: opportunities and challenges. Wirel. Netw. 21(8), 2657–2676 (2015)
T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez Jr., Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1(1), 335–349 (2013)
W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, F. Aryanfar, Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)
L.F.M. Vieira, M.A.M. Vieira, Network coding for 5G network and D2D communication, in Proceedings of the 13th ACM Symposium on QoS and Security for Wireless and Mobile Networks (ACM, 2017), pp. 113–120
I. Al Shiab, Cross-layer software defined networks: a survey.
Y. Niu, Y. Li, M. Chen, D. Jin, S. Chen, A cross-layer design for a software-defined millimeter-wave mobile broadband system. IEEE Commun. Mag. 54(2), 124–130 (2016)
H. Baligh, M. Hong, W.-C. Liao, Z.-Q. Luo, M. Razaviyayn, M. Sanjabi, R. Sun, Cross layer provision of future cellular networks (2014). arXiv preprint: 1407.1424
J. Tang, W.P. Tay, T.Q.S. Quek, Cross-layer resource allocation with elastic service scaling in cloud radio access network. IEEE Trans. Wirel. Commun. 14(9):5068–5081 (2015)
B. Fu, Y. Xiao, H. Deng, H. Zeng, A survey of cross-layer designs in wireless networks. IEEE Commun. Surv. Tutorials 16(1), 110–126 (2014)
X. Lin, N.B. Shroff, R. Srikant, A tutorial on cross-layer optimization in wireless networks. IEEE J. Sel. Areas Commun. 24(8), 1452–1463 (2006)
L.D.P. Mendes, J.J.P.C. Rodrigues, A survey on cross-layer solutions for wireless sensor networks. J. Netw. Comput. Appl. 34(2), 523–534 (2011)
R. Ranjan, S. Varma, Challenges and implementation on cross layer design for wireless sensor networks. Wirel. Pers. Commun. 86(2), 1037–1060 (2016)
I. Al-Anbagi, M. Erol-Kantarci, H.T. Mouftah, A survey on cross-layer quality-of-service approaches in WSNS for delay and reliability-aware applications. IEEE Commun. Surv. Tutorials 18(1), 525–552 (2016)
R. Muraleedharan, L.A. Osadciw, Security: cross layer protocol in wireless sensor network, in INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings (IEEE, 2006), pp. 1–2
D.K. Sah, T. Amgoth, Parametric survey on cross-layer designs for wireless sensor networks. Comput. Sci. Rev. 27, 112–134 (2018)
M.C. Vuran, I.F. Akyildiz, XLP: a cross-layer protocol for efficient communication in wireless sensor networks. IEEE Trans. Mob. Comput. 9(11), 1578–1591 (2010)
R, Trivisonno, R, Guerzoni, I, Vaishnavi, D. Soldani, SDN-based 5G mobile networks: architecture, functions, procedures and backward compatibility. Trans. Emerg. Telecommun. Technol. 26(1), 82–92 (2015)
Network Functions Virtualisation, SDN and openflow world congress (2012)
ETSI, Network function virtualisation-white paper2 (2013). http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
NFVISG ETSI, Network functions virtualization, white paper (2014). http://www.esti.org/technologiescluster/technologies/nfv
P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, J. Yao, 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)
B. Blanco, J.O. Fajardo, I. Giannoulakis, E. Kafetzakis, S. Peng, J. Pérez-Romero, I. Trajkovska, P.S. Khodashenas, L. Goratti, M. Paolino et al., Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN. Comput. Stand. Interfaces 54, 216–228 (2017)
K. Greene, TR10: software-defined networking. Technology Review (MIT) (2009)
P. Newman, G. Minshall, T.L. Lyon, IP switching-ATM under IP. IEEE/ACM Trans. Networking (TON) 6(2), 117–129 (1998)
N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, S. Shenker, NOX: towards an operating system for networks. ACM SIGCOMM Comput. Commun. Rev. 38(3), 105–110 (2008)
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)
C. Rotsos, D. King, A. Farshad, J. Bird, L. Fawcett, N. Georgalas, M. Gunkel, K. Shiomoto, A. Wang, A. Mauthe et al., Network service orchestration standardization: a technology survey. Comput. Stand. Interfaces 54, 203–215 (2017)
Open Networking Foundation, Software-defined networking: the new norm for networks. ONF White Pap. 2, 2–6 (2012)
D. Kreutz, F.M.V. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: a comprehensive survey. Procee. IEEE 103(1), 14–76 (2015)
H. Jamjoom, D. Williams, U. Sharma, Don’t call them middleboxes, call them middlepipes, in Proceedings of the third workshop on Hot topics in software defined networking (ACM, 2014), pp. 19–24
M. Series, IMT vision–framework and overall objectives of the future development of IMT for 2020 and beyond (2015)
Open Network Foundation, Openflow switch specifications 1.5.0. https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
J.P. Vasseur, J.L. Le Roux, Path computation element (PCE) communication protocol (PCEP). Technical report (2009)
R. Enns, M. Bjorklund, J. Schoenwaelder, Network configuration protocol (NETCONF). Network (2011). http://www.rfc-editor.org/info/rfc6241
Open Network Foundation, Of-config 1.2: openflow management and configuration protocol (2014). https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
ITU, ITU-T recommendation M.3100: generic network information model. ITU 1, 1–6 (2005)
ITU, M.3102: unified generic management information model for connection-oriented and connectionless networks. ITU-T 1, 1–6 (2011)
DMTF Common Information Model, DMTF 1, 1–6. http://www.dmtf.org/standards/cim
Open Network Foundation, Core information model (coremodel). https://www.opennetworking.org/images/stories/downloads/sdn-resources/technicalreports/ONF-CIM_Core_Model_base_document_1.1.pdf
P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., Onos: towards an open, distributed SDN OS, in Proceedings of the third workshop on Hot topics in software defined networking (ACM, 2014), pp. 1–6
J. Medved, R. Varga, A. Tkacik, K. Gray, OpenDaylight: towards a model-driven SDN controller architecture, in 2014 IEEE 15th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) (IEEE, 2014), pp. 1–6
D. Katz, K. Kompella, D. Yeung, Traffic engineering (TE) extensions to OSPF version 2. Technical report (2003)
D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow, RSVP-TE: extensions to RSVP for LSP tunnels. Technical report (2001)
D. Farinacci, V. Fuller, D. Meyer, D. Lewis, The locator/ID separation protocol (LISP). Technical report (2013)
OTF, Project ASPEN: real time media interface specification.
E. Crabbe, R. Varga, J. Medved, I. Minei, PCEP extensions for stateful PCE, internet-draft draft-ietf-pce-stateful-pce-14. Internet Eng. Task Force 1, 1–6 (2017)
Q. Wu, D. Dhody, D. Lopez, O.G. de Dios, Secure transport for PCEP, internet-draft draft-ietf-pce-pceps-10. Internet Eng. Task Force 1, 1–6 (2018)
S. Hares, Intent-based nemo overview. Internet Draft RFC 1, 1–6 (2015)
E.W. Burger, J. Seedorf, Application-layer traffic optimization (ALTO) problem statement (2009)
NEC NEC, Programmableflow: redefining cloud network virtualization with openflow. https://www.necam.com/whitepapers/Docs/?S=Pflow
E.T. Docket, Technical report, Technical Report (2017). https://www.opnfv.org/
Specifications Technical Report Docket, ET., Technical report (2017). https://portal.3gpp.org/desktopmodules/specifications/specificationdetails.aspx?specificationid=3144
P. Neves, R. Calé, M. Costa, G. Gaspar, J. Alcaraz-Calero, Q. Wang, J. Nightingale, G. Bernini, G. Carrozzo, Á. Valdivieso et al., Future mode of operations for 5G–the SELFNET approach enabled by SDN/NFV. Comput. Stand. Interfaces 54, 229–246 (2017)
C. Price, S. Rivera et al., OPNFV: an open platform to accelerate NFV. White Paper. A Linux Foundation Collaborative Project (2012)
OTF, Project boulder: intent northbound interface (NBI). Open Netw Found. 1, 1–6 (2015)
P. Borril, M. Burgess, T. Craw, M. Dvorkin, A promise theory perspective on data networks. arXiv preprint: 1405.2627 (2014)
OTF, Neutron developer documentation. http://docs.openstack.org/developer/neutron/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Appendix
Appendix
1.1 I NEMO
It is a domain-specific language (DSL), following the declarative programming paradigm. Its progressing project is to make abstract specification on an end-point, describe a network end-point, a connection, describe connectivity requirements between network end-points, and an operation describes packet operations.
Huawei is currently leading an implementation initiative, based on ODL and the OPNFV project [71]. In parallel, the ONF has recently organized a work group to standardize a common intent model. The group aims to fulfill two objectives:
-
a.
Define the architecture and requirements of intent implementations across controllers and define portable intent expressions.
-
b.
Develop a community-approved information model that unifies intent interfaces across controllers.
The particular standard is combined with the improvement of the Boulder structure [72], an open-source [73], OpenStack Neutron [74], and portable intent system that can be incorporated into all major SDNs. Its intent toward the goals through a grammar, which comprises subjects, predicates, and targets. The dialect can be extended to incorporate imperatives and conditions. The reference support execution has set up similarity with ODL through the Network Intent Composition (NIC) project, whereas ONOS support is currently being worked on.
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sah, D.K., Kumar, D.P., Shivalingagowda, C., Jayasree, P.V.Y. (2019). 5G Applications and Architectures. In: Jayakody, D., Srinivasan, K., Sharma, V. (eds) 5G Enabled Secure Wireless Networks . Springer, Cham. https://doi.org/10.1007/978-3-030-03508-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-03508-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03507-5
Online ISBN: 978-3-030-03508-2
eBook Packages: EngineeringEngineering (R0)