Advertisement

Exploratory Study of the Effects of Cardiac Murmurs on Electrocardiographic-Signal-Based Biometric Systems

  • M. A. Becerra
  • C. Duque-Mejía
  • C. Zapata-Hernández
  • D. H. Peluffo-Ordóñez
  • L. Serna-Guarín
  • Edilson Delgado-Trejos
  • E. J. Revelo-Fuelagán
  • X. P. Blanco Valencia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11314)

Abstract

The process of distinguishing among human beings through the inspection of acquired data from physical or behavioral traits is known as biometric identification. Mostly, fingerprint- and iris-based biometric techniques are used. Nowadays, since such techniques are highly susceptible to be counterfeited, new biometric alternatives are explored mainly based on physiological signals and behavioral traits -which are useful not only for biometric identification purposes, but may also play a role as a vital signal indicator. In this connection, the electrocardiographic (ECG) signals have shown to be a suitable approach. Nonetheless, their informative components (morphology, rhythm, polarization, and among others) can be affected by the presence of a cardiac pathology. Even more, some other cardiac diseases cannot directly be detected by the ECG signal inspection but still have an effect on their waveform, that is the case of cardiac murmurs. Therefore, for biometric purposes, such signals should be analyzed submitted to the effects of pathologies. This paper presents a exploratory study aimed at assessing the influence of the presence of a pathology when analyzing ECG signals for implementing a biometric system. For experiments, a data base holding 20 healthy subjects and 20 pathological subjects (diagnosed with different types of cardiac murmurs) are considered. The proposed signal analysis consists of preprocessing, characterization (using wavelet features), feature selection and classification (five classifiers as well as a mixture of them are tested). As a result, through the performed comparison of the classification rates when testing pathological and normal ECG signals, the cardiac murmurs’ undesired effect on the identification mechanism performance is clearly unveiled.

Keywords

Biometric identification Cardiac murmur Electrocardiographic signal Signal processing 

Notes

Acknowledgment

The authors acknowledge to the research project “Desarrollo de una metodología de visualización interactiva y eficaz de información en Big Data” supported by Agreement No. 180 November 1st, 2016 by VIPRI from Universidad de Nariño. As well, authors thank the valuable support given by the SDAS Research Group (www.sdas-group.com).

References

  1. 1.
    Barzegar, R., Asghari Moghaddam, A., Adamowski, J., Ozga-Zielinski, B.: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stoch. Environ. Res. Risk Assess. 32(3), 799–813 (2018).  https://doi.org/10.1007/s00477-017-1394-zCrossRefGoogle Scholar
  2. 2.
    Becerra, M.A., Orrego, D.A., Mejia, C., Delgado-Trejos, E.: Stochastic analysis and classification of 4-area cardiac auscultation signals using Empirical Mode Decomposition and acoustic features. Comput. Cardiol. (CinC) 2012(September), 529–532 (2012)Google Scholar
  3. 3.
    Da Silva Luz, E.J., Moreira, G.J., Oliveira, L.S., Schwartz, W.R., Menotti, D.: Learning deep off-the-person heart biometrics representations. IEEE Trans. Inf. Forensics Secur. 13(5), 1258–1270 (2018).  https://doi.org/10.1109/TIFS.2017.2784362CrossRefGoogle Scholar
  4. 4.
    Dar, M.N., Akram, M.U., Shaukat, A., Khan, M.A.: ECG based biometric identification for population with normal and cardiac anomalies using hybrid HRV and DWT features. In: 2015 5th International Conference on IT Convergence and Security, ICITCS 2015 - Proceedings (2015).  https://doi.org/10.1109/ICITCS.2015.7292977
  5. 5.
    Elhoseny, M., Essa, E., Elkhateb, A., Hassanien, A.E., Hamad, A.: Cascade multimodal biometric system using fingerprint and iris patterns. In: Hassanien, A.E., Shaalan, K., Gaber, T., Tolba, M.F. (eds.) AISI 2017. AISC, vol. 639, pp. 590–599. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-64861-3_55CrossRefGoogle Scholar
  6. 6.
    Hejazi, M., Al-Haddad, S.A., Hashim, S.J., Aziz, A.F.A., Singh, Y.P.: Feature level fusion for biometric verification with two-lead ECG signals. In: Proceeding - 2016 IEEE 12th International Colloquium on Signal Processing and its Applications, CSPA 2016, March, pp. 54–59 (2016).  https://doi.org/10.1109/CSPA.2016.7515803
  7. 7.
    Hejazi, M., Al-Haddad, S.A., Singh, Y.P., Hashim, S.J., Abdul Aziz, A.F.: ECG biometric authentication based on non-fiducial approach using kernel methods. Digit. Signal Process.: Rev. J. 52, 72–86 (2016).  https://doi.org/10.1016/j.dsp.2016.02.008CrossRefGoogle Scholar
  8. 8.
    da Silva, H.P., Carreiras, C., Lourenco, A., Fred, A., das Neves, R.C., Ferreira, R.: Off-the-person electrocardiography: performance assessment and clinical correlation. Health Technol. 4, 309–318 (2015)CrossRefGoogle Scholar
  9. 9.
    Jimenez, J., Becerra, M., Delgado-Trejos, E.: Heart murmur detection using ensemble empirical mode decomposition and derivations of the mel-frequency cepstral coefficients on 4-area phonocardiographic signals. In: Computing in Cardiology, vol. 41 (2014)Google Scholar
  10. 10.
    Jung, W.H., Lee, S.G.: ECG identification based on non-fiducial feature extraction using window removal method. Appl. Sci. 7(12), 1205 (2017).  https://doi.org/10.3390/app7111205. http://www.mdpi.com/2076-3417/7/11/1205CrossRefGoogle Scholar
  11. 11.
    Kanchan, T., Krishan, K.: Loss of fingerprints: forensic implications. Egypt. J. Forensic Sci. 8(1), 19 (2018).  https://doi.org/10.1186/s41935-018-0051-0CrossRefGoogle Scholar
  12. 12.
    Martinez-Diaz, M., Fierrez, J., Galbally, J., Ortega-Garcia, J.: An evaluation of indirect attacks and countermeasures in fingerprint verification systems. Pattern Recognit. Lett. 32(12), 1643–1651 (2011).  https://doi.org/10.1016/J.PATREC.2011.04.005CrossRefGoogle Scholar
  13. 13.
    Moreno-Revelo, M., Ortega-Adarme, M., Peluffo-Ordoñez, D.H., Alvarez-Uribe, K.C., Becerra, M.A.: Comparison among physiological signals for biometric identification. In: Yin, H., et al. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 436–443. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68935-7_47CrossRefGoogle Scholar
  14. 14.
    Murillo-Escobar, M., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R.: A robust embedded biometric authentication system based on fingerprint and chaotic encryption. Expert. Syst. Appl. 42(21), 8198–8211 (2015).  https://doi.org/10.1016/j.eswa.2015.06.035CrossRefGoogle Scholar
  15. 15.
    Odinaka, I., Lai, P.H., Kaplan, A.D., O’Sullivan, J.A., Sirevaag, E.J., Rohrbaugh, J.W.: ECG biometric recognition: a comparative analysis (2012).  https://doi.org/10.1109/TIFS.2012.2215324CrossRefGoogle Scholar
  16. 16.
    Pal, S., Mitra, M.: Increasing the accuracy of ECG based biometric analysis by data modelling. Measurement 45(7), 1927–1932 (2012).  https://doi.org/10.1016/J.MEASUREMENT.2012.03.005CrossRefGoogle Scholar
  17. 17.
    Patro, K., Kumar, P.: Machine learning classification approaches for biometric recognition system using ECG signals. J. Eng. Sci. Technol. Rev. 10(6), 1–8 (2017).  https://doi.org/10.25103/jestr.106.01CrossRefGoogle Scholar
  18. 18.
    Pinto, J., Cardoso, J., Lourenço, A., Carreiras, C.: Towards a continuous biometric system based on ECG signals acquired on the steering wheel. Sensors 17(10), 2228 (2017).  https://doi.org/10.3390/s17102228. http://www.mdpi.com/1424-8220/17/10/2228CrossRefGoogle Scholar
  19. 19.
    Sidek, K.A., Khalil, I., Jelinek, H.F.: ECG biometric with abnormal cardiac conditions in remote monitoring system. IEEE Trans. Syst., Man, Cybern.: Syst. 44(11), 1498–1509 (2014).  https://doi.org/10.1109/TSMC.2014.2336842CrossRefGoogle Scholar
  20. 20.
    Song, W., Kim, T., Kim, H.C., Choi, J.H., Kong, H.J., Lee, S.R.: A finger-vein verification system using mean curvature. Pattern Recognit. Lett. 32(11), 1541–1547 (2011)CrossRefGoogle Scholar
  21. 21.
    Tan, R., Perkowski, M.: Toward improving electrocardiogram (ECG) biometric verification using mobile sensors: a two-stage classifier approach. Sensors 17(2), 410 (2017)CrossRefGoogle Scholar
  22. 22.
    Zapata, J.C., Duque, C.M., Rojas-Idarraga, Y., Gonzalez, M.E., Guzmán, J.A., Becerra Botero, M.A.: Data fusion applied to biometric identification – a review. In: Solano, A., Ordoñez, H. (eds.) CCC 2017. CCIS, vol. 735, pp. 721–733. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66562-7_51CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Wu, J.: Practical human authentication method based on piecewise corrected Electrocardiogram. In: Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS (61571268), pp. 300–303 (2017).  https://doi.org/10.1109/ICSESS.2016.7883071
  24. 24.
    Zhang, Z., Li, Y., Jin, S., Zhang, Z., Wang, H., Qi, L., Zhou, R.: Modulation signal recognition based on information entropy and ensemble learning. Entropy 20(3), 198 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • M. A. Becerra
    • 1
    • 2
  • C. Duque-Mejía
    • 1
  • C. Zapata-Hernández
    • 1
  • D. H. Peluffo-Ordóñez
    • 3
  • L. Serna-Guarín
    • 4
  • Edilson Delgado-Trejos
    • 4
  • E. J. Revelo-Fuelagán
    • 5
  • X. P. Blanco Valencia
    • 3
  1. 1.Institución Universitaria Pascual BravoMedellínColombia
  2. 2.Universidad de MedellínMedellínColombia
  3. 3.SDAS Research GroupYachay TechUrcuquíEcuador
  4. 4.Instituto Tecnológico MetropolitanoMedellínColombia
  5. 5.Universidad de NariñoPastoColombia

Personalised recommendations