Allan, J., et al.: Topic detection and tracking pilot study final report (1998)
Google Scholar
Allan, J., et al.: Detections, bounds, and timelines: UMass and TDT-3. In: Proceedings of Topic Detection and Tracking Workshop. sn (2000)
Google Scholar
Fiscus, J., et al.: NISTs 1998 topic detection and tracking evaluation (TDT2). In: Proceedings of the 1999 DARPA Broadcast News Workshop (1999)
Google Scholar
Ma, J., Perkins, S.: Online novelty detection on temporal sequences. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2003)
Google Scholar
Martin, A., et al.: The DET curve in assessment of detection task performance. National Institute of Standards and Technology, Gaithersburg, MD (1997)
Google Scholar
Mikolov, T, et al.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Moran, S., et al.: Enhancing first story detection using word embeddings. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM (2016)
Google Scholar
Petrovic, S., Osborne, M., Lavrenko, V.: Streaming first story detection with application to Twitter. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics (2010)
Google Scholar
Petrovic, S., Osborne, M., Lavrenko, V.: Using paraphrases for improving first story detection in news and Twitter. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics (2012)
Google Scholar
Pimentel, M.A.F.: A review of novelty detection. Signal Process. 99, 215–249 (2014)
CrossRef
Google Scholar
Qiu, Y., et al.: Time-aware first story detection in Twitter stream. In: IEEE International Conference on Data Science in Cyberspace (DSC). IEEE (2016)
Google Scholar
Schlkopf, B.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)
CrossRef
Google Scholar
Wang, F., Franco-Penya, H.-H., Kelleher, J.D., Pugh, J., Ross, R.: An analysis of the application of simplified silhouette to the evaluation of k-means clustering validity. In: Perner, P. (ed.) MLDM 2017. LNCS (LNAI), vol. 10358, pp. 291–305. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62416-7_21
CrossRef
Google Scholar
Wurzer, D., Lavrenko, V., Osborne, M.: Twitter-scale new event detection via K-term hashing. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (2015)
Google Scholar
Yang, Y., Pierce, T., Carbonell, J.: A study of retrospective and on-line event detection. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM (1998)
Google Scholar