Skip to main content

Generating Training Plans Based on Existing Sports Activities

Part of the Adaptation, Learning, and Optimization book series (ALO,volume 22)


Creating training plans is the more important task for real trainers, in which specific training sessions are prescribed to trainees according to intensity, duration, type, and repetition, for a specific training period. After realization of the plan, it is expected that the athlete in training would acquire the proper performance level needed for achieving the top results in competitions. Typically, this planning requires controlling the athlete’s results obtained during the realization and making decisions by analyzing these. Especially, the performance analysis is recently becoming too difficult for the trainers due to enormous amount of data generated by mobile devices during the training.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-03490-0_7
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-03490-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 7.8
Fig. 7.9
Fig. 7.10
Fig. 7.11
Fig. 7.12
Fig. 7.13
Fig. 7.14
Fig. 7.15
Fig. 7.16
Fig. 7.17
Fig. 7.18
Fig. 7.19


  1. Tobar, D.F.L., Meurer, T.S., Benedetti, B.T.: Motivational factors of senior athletes to participate in the Ironman. Sci. Sports 28(3), 63–65 (2013)

    Google Scholar 

  2. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. Appl. stat. 100–108 (1979)

    CrossRef  Google Scholar 

  3. Storn, R., Price, K.: Differential evolution; a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997).

    MathSciNet  CrossRef  Google Scholar 

  4. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evolut. Comput. 10(6), 646–657 (2006)

    CrossRef  Google Scholar 

  5. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Berlin, Heidelberg (2010).

    CrossRef  Google Scholar 

  6. Fister Jr., I., Fister, D., Yang, X.S.: A hybrid bat algorithm. Electrotech. Rev. 80(1–2), 1–7 (2013)

    MATH  Google Scholar 

  7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  8. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations and Applications, pp. 169–178. Springer (2009)

    Google Scholar 

  9. Fister, I., Strnad, D., Yang, X.S., Fister Jr., I.: Adaptation and hybridization in nature-inspired algorithms. In: Fister, I., Fister Jr., I. (eds.) Adaptation and Hybridization in Computational Intelligence, Adaptation, learning, and optimization, pp. 3–50. Springer, Berlin (2015)

    Google Scholar 

  10. Fister, I., Rauter, S., Yang, X.S., Ljubič Karin, F., Iztok, F.: Planning the sports training sessions with the bat algorithm. Neurocomputing 149, 993–1002 (2015)

    CrossRef  Google Scholar 

  11. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)

    CrossRef  Google Scholar 

  12. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA (1974)

    MATH  Google Scholar 

  13. Fister, I., Rauter, S., Yang, X.S., Ljubič, K., Fister Jr., I.: Planning the sports training sessions with the bat algorithm. Neurocomputing 149, 993–1002 (2015)

    CrossRef  Google Scholar 

  14. Friedman, M.: A comparison of alternative tests of significance for the problem of \(m\) rankings. Ann. Math. Statist. 11(1), 86–92 (1940).

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Derrac, J., Garca, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput. 1(1), 3–18(2011).

    CrossRef  Google Scholar 

  16. Nemenyi, P.B.: Distribution-free multiple comparisons. Ph.D. thesis, Princeton University, New Jersey, US (1963)

    Google Scholar 

  17. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Fister Jr., I.: Computational intelligence algorithms for the development of artificial sport trainer. Doctoral dissertation. University of Maribor, Faculty of Electrical Engineering and Computer Science. Maribor (2017)

    Google Scholar 

Download references


The results published in this chapter are based on the Ph.D. dissertation of Iztok Fister Jr. defended at the University of Maribor in 2017 [18].

Author information

Authors and Affiliations


Corresponding author

Correspondence to Iztok Fister .

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Fister, I., Fister Jr., I., Fister, D. (2019). Generating Training Plans Based on Existing Sports Activities. In: Computational Intelligence in Sports. Adaptation, Learning, and Optimization, vol 22. Springer, Cham.

Download citation